Equivalencein Abductive Logic

Katsumi I noue
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430

Japan
ki@nii.ac.jp

Abstract

We consider the problem of identifying equiva-
lence of two knowledge bases which are capable
of abductive reasoning. Here, a knowledge base
is written in either first-order logic or nonmono-
tonic logic programming. In this work, we will give
two definitions of abductive equivalence. The first
one, explainable equivalence, requires that two ab-
ductive programs have the same explainability for
any observation. Another one, explanatory equiva-
lence, guarantees that any observation has exactly
the same explanations in each abductive frame-
work. Explanatory equivalence is a stronger notion
than explainable equivalence. In first-order abduc-
tion, explainable equivalence can be verified by the
notion of extensional equivalence in default theo-
ries. In nonmonotonic logic programs, explanatory
equivalence can be checked by means of the notion
of relative strong equivalence. We also show the
complexity results for abductive equivalence.

1 Introduction

Nowadays, abduction is used in many Al applications, includ-
ing diagnosis, design, updates, and discovery. Abduction is
an important paradigm for problem solving, and is incorpo-
rated in programming technologies, i.e., abductive logic pro-
gramming (ALP) [12]. Automated abduction is also studied
in the literature as an extension of deductive methods or a part
of inductive systems, and its computational properties have
also been studied [22; 2; 3; 4].

In this work, we are concerned with such computational
issues on abductive reasoning. Despite being a problem-
solving paradigm, ALP has a lot of issues which have not
been fully understood yet. In particular, there are no concrete
methods for (a) evaluation of abductive power in ALP, (b)
measurement of efficiency in abductive reasoning, (c) seman-
tically correct simplification and optimization, (d) debugging
and verification in ALP, and (e) standardization in ALP. Since
all these topics are important for any programming paradigm,
the lack of them is a serious drawback of ALP. Then, it can
be recognized that all the above issues are related to different
notions of identification or equivalence in ALP. In particular,

Chiaki Sakama
Wakayama University
Sakaedani, Wakayama 640-8510
Japan
sakama@sys.wakayama-u.ac.jp

the item (c) is related to understanding the semantics of ALP
with respect to modularity and contexts.

Abduction can be formalized in various logics [13]. Then,
we can consider several notions of equivalence in several log-
ics for abduction. In this paper, we will give two definitions
of abductive equivalence in two logical frameworks for ab-
duction. Two logics we consider here are first-order logic
(FOL) and abductive logic programming (ALP). The first ab-
ductive equivalence, called explainable equivalence, requires
that two abductive programs have the same explainability
for any observation. Another one, explanatory equivalence,
guarantees that any observation has exactly the same explana-
tions in each abductive framework. Explanatory equivalence
is stronger than explainable equivalence.

In this paper, we characterize these two notions of abduc-
tive equivalence in terms of other well-known concepts in Al
and logic programming. In abduction in first-order logic, we
will see that explainable equivalence can be verified by the
notion of equivalence in default logic [18], which is defined
for the families of extensions of two default theories. On the
other hand, abductive equivalence in ALP is more compli-
cated than in the case of FOL due to the nonmonotonicity in
logic programs. In fact, equivalence between two abductive
logic programs has little been discussed in the literature ex-
cept that effects of partial deduction in ALP are analyzed in
[20]. Here, we will see that explanatory equivalence in ALP
can be characterized by the notion of (relative) strong equiv-
alence [14; 10; 24].

The rest of this paper is organized as follows. Section 2
presents two definitions for abductive equivalence. Section 3
considers first-order logic as the representation language,
while Section 4 considers nonmonotonic logic programming
for ALP. Section 5 gives concluding remarks.

2 Abductive Equivalence

We start with the question as to when two abductive frame-
works are equivalent. As far as the authors know, there is no
answer for such a question in the literature of ALP. There
are many parameters which should be considered important
in defining equivalence notions in abductive frameworks. In
the world, both background knowledge and observations are
surely essential. In an agent who performs abduction, on the
other hand, her abductive power must depend on her logic



(language, syntax, semantics) of background knowledge, ob-
servations and hypotheses. Moreover, the quality of abduc-
tion is relevant to other parameters such as axioms, infer-
ence procedures, logics of explanations, and criteria of best
explanations. If we would take all such parameters into ac-
count, the task of defining the equivalence notion might be-
come combinatorial and too complex.

In the following, we thus consider a rather simple frame-
work for our problem while we try to hold the essence of
equivalence notions as much as possible. First, logic, back-
ground knowledge and hypotheses are put as input parameters
in each abductive framework. Secondly, a logic of explana-
tions is taken into account in a definition, but its diversity is
reflected in different notions of abductive equivalence.

The following definition of abductive frameworks is a stan-
dard one [13; 22; 2; 3]. As a notation, ¥ |=;, F means that a
formula F is derived from a set ¥ of formulas in a logic L.

Definition 2.1 Let B and H be sets of formulas in some un-
derlying logic L. An abductive framework is defined as a
triple (L, B, H), where B is called background knowledge
and each element of H is called a candidate hypothesis.

Definition 2.2 Let (L, B, H) be an abductive framework,
and O a formula in L, and E a formula belonging to H.
We define that E is an explanation of an observation O in
(L,B,H)if BUE =1, Oand BU E is consistent in L. We
say that O is explainablein (L, B, H) if it has an explanation
in(L,B, H).

We now give two definitions for abductive equivalence. We
assume that the underlying logic L is common when two ab-
ductive theories are compared.

Definition 2.3 Two abductive frameworks (L, B, H;) and
(L, Bs, H,) are explainably equivalent if, for any observation
O, there is an explanation of O in (L, By, Hy) iff there is an
explanation of O in (L, B, Hs).

Explainable equivalence requires that two abductive frame-
works have the same explainability for any observation. Ex-
plainable equivalence may reflect a situation that two pro-
grams have different knowledge to derive the same goals.

Definition 2.4 Two abductive frameworks (L, B, Hy) and
(L, Bs, H,) are explanatorily equivalent if, for any observa-
tion O, E is an explanation of O in (L, By, Hy) iff E is an
explanation of O in (L, B, Hs).

Explanatory equivalence assures that two abductive frame-
works have the same explanation power for any observation.
Explanatory equivalence is stronger than explainable equiva-
lence as follows.

Proposition 2.1 If abductive frameworks (L, By, H;) and
(L, B2, Hy) are explanatorily equivalent, then they are ex-
plainably equivalent.

For explanatory equivalence, we can assume that the hy-
potheses H are common in two abductive frameworks in Def-
inition 2.4, as the following property holds.

Proposition 2.2 If A; = (L, By, Hy) and Ay = (L, Bo, H»)
are explanatorily equivalent, then H; = H), where H] =
{h € H; | B;U{h}isconsistentin L} for i = 1, 2.

Proof. Assume that H; \ Hj # 0. Then, for a formula ¢ €
Hi{\ Hj, {¢} is an explanation of ¢ in A, because By U {¢}
is consistent in L. However, {¢} is not an explanation of ¢ in
As. Hence, A; and A, are not explanatorily equivalent. O

Note in Proposition 2.2 that any hypothesis h in H; \ H!
cannot be added without violating the consistency of B;U{h}
in L. Thus, H! is the set of hypotheses that can be actually
used in explanations of some formulas.

Example 2.1 Suppose the abductive frameworks A, =
(FOLa{ajp}a{aab}) and A, = (FOL, {pr}a{aab})'
Then, A; and A, are explainably equivalent, but are
not explanatorily equivalent. On the other hand, A3 =
(FoL,{aDp},{b}) and A4, = (FoL, {bDp},{b}) are neither
explainably equivalent nor explanatorily equivalent.

3 Abduction in First-order Logic

Abduction is used in many Al applications, and classical first-
order logic is most often used as the underlying logic for ab-
duction [17; 13; 2; 22]. When the underlying logic L is FOL,
the relation =1, becomes the usual entailment relation |=. In
first-order abduction, explanations are usually defined as a set
of ground instances from hypotheses [17]. That is, a set E of
ground instances of elements of H is an explanation of O in
(FOL,B,H)ifXUE = 0 and X U E is consistent.

In the following, T'h(X) denotes the set of logical conse-
quences of a set X of first-order formulas. Thatis, Th(X) =
{F | £ |= F}. The next definition is originally given for
default logic by Reiter [18].

Definition 3.1 [19; 17] Let B and H be sets of first-order
formulas. An extension of B with respect to H is Th(BU S)
where S is a maximal subset of ground instances of elements
from H such that B U S is consistent.

Using the notion of extensions, explainable equivalence
can be characterized in first-order abduction.

Theorem 3.1 Two abductive frameworks (FoL, By, H; ) and
(FOL, B, H») are explainably equivalent iff the extensions of
B, with respect to H; coincide with the extensions of B, with
respect to Ho.

Proof. First, we claim that the union of the extensions of
B with respect to H are exactly the set of formulas ex-
plainable in (FoL, B, H). To see this, we can use a well-
known theorem [17; 22] that a formula O can be explained in
(FOL, B, H) iff there is a consistent extension X of B with
respect to H such that X contains O. Thus, the set of all ex-
plainable formulas are precisely those formulas contained in
at least one extension of B with respect to H.

Now, let A; = (FOL,Bl,Hl) and A, = (FOL,BQ,HQ)
be two abductive frameworks. Suppose that the extensions of
B, with respect to H; coincide with those of B, with respect
to H,. By the above claim, the set of formulas explainable
in Ay is equal to the set of formulas explainable in A,. This
means that A, and A, are explainably equivalent.

Conversely, assume that there is an extension X, of B,
with respect to H> which is not an extension of B, with re-
spect to H;. Let F'x, be a first-order formula which is log-
ically equivalent to X5. Such a formula actually exists be-



cause Xo = Th(B» U S) holds for some maximally consis-
tent subset .S of H,, and hence X is logically equivalent to
Nsep, A Nyes 9- Since Xo is consistent, Fx, is consistent
too. Then, F'x, is explainable in A, because S is an explana-
tion of Fx,.

Now, if F'x, is not explainable in A4, then obviously A,
and A, are not explainably equivalent. Hence, there is an
explanation of F'x, in A;. Then, there is an extension X; of
B; with respect to H; which contains F'x,. Since X5 is not
an extension of B, withrespectto Hy, X; # X5 holds. Then,
X2 C X;. Let F'x, be aformulawhich is logically equivalent
to X;. By the same argument as above, F'x, is explainable
in A;. However, this F'x, cannot be explained in A,. This
is because, if F'x, were explained in A, there must be an
extension X/ of By with respect to H» such that Xo C X3,
which is impossible because any extension is orthogonal to
another extension in a default theory [18]. In any case, A
and A, are not explainably equivalent. a

In [15], Reiter’s default theories A; = (Dy, B;) and
Ay = (D2, By) are said to be equivalent if the extensions of
A1 are the same as the extensions of As. When an abductive
framework (FOL, B, H) is given, we can associate a default
theory A = (D, B) where D is the set of prerequisite-free
normal defaults {4 | d € H} such that there is a one-to-one
correspondence between the extensions of A and the exten-
sions of B with respect to H [17].

Corollary 3.2 Two abductive frameworks (FoL, By, H;)
and (FoL, B, H») are explainably equivalent iff the default
theories (D4, By) and (D>, By) are equivalent where D; =
{4 |de H;}fori=1,2.

Example 3.1 Suppose two abductive frameworks, A; =
(FoL, By, Hy) and A, = (FOL, By, H»), where

B, = {aD>p, bD-p},

H = {a,b,a=c, b=d, p=q},
B, = {c>gq, d>—q}, and

Hy, = {c¢,d,a=c¢, b=d, p=q}.

Then, A; and A, are explainably equivalent. In fact, the
two extensions of By with respect to H, are Th(B; U (H; \
{b})) =Th({a,—b,c,~d,p,q}) and Th(B;U(H; \ {a})) =
Th({—a,b,—ec,d,—p,—q}), which are respectively equiva-
lent to the two extensions of B with respect to Ha, Th(Ba U
(H \ {d})) and Th(B> U (Hz \ {c})).

It is interesting to see that we can transform any abductive
framework to an explainably equivalent abductive framework
whose background theory is empty. The next property is also
derived by the representation theory for default logic [15].

Corollary 3.3 For any abductive framework (FoL, B, H),
there is an abductive framework (FoL, (), H') which is ex-
plainably equivalent to (FOL, B, H).

Proof.Put H' = {hAp | h € H}U{p}, wherep = A p f.
Then, it holds for any O that, BU E = O iff E' = O where
ECHandE ={hAp|he E}U{p} CH" O

An abductive framework (L, B, H) is called compatible if
B U H is consistent. Explainable equivalence can be easily
verified for compatible frameworks.

Corollary 3.4 Two compatible abductive frameworks
(FOL, By, Hy) and (FOL, B-, H») are explainably equivalent
IﬁBl UH1 = BQ UHQ.

An abductive framework (FoL, B, £) is called assumption-
free where £ is the set of all literals in the underlying lan-
guage. It is known that the complexity of finding explana-
tions in assumption-free abductive frameworks is not harder
than that in assumption-based frameworks [22; 4]. Explain-
able equivalence in the assumption-free case can also be sim-
ply characterized as follows.

Coradllary 3.5 Two abductive frameworks (FoL, By, £) and
(FOL, Bs, L) are explainably equivalent iff B; = Bs.

Proof. For an assumption-free abductive framework
(FOL, B, L), each extension of B with respect to £ is
logically equivalent to a model of B. Hence, explainable
equivalence implies that the models of B, coincide with the
models of B>, and vice versa. O

For explanatory equivalence in first-order abduction, logi-
cal equivalence of background theories is necessary and suf-
ficient.

Theorem 3.6 Two abductive frameworks (FoL, By, H) and
(FOL, B2, H) are explanatorily equivalent iff B; = Bs.

Proof. If By = Bs, then for any E and any O, it holds that,
B,UE E Oiff BBUE E O, andthat, B; UE is consistent iff
B, UE is consistent. Hence, (FoL, By, H) and (FOL, B, H)
are explanatorily equivalent.

Conversely, suppose that (FOL, By, H) and (FOL, Bo, H)
are explanatorily equivalent. Then, for any formula O and
any E from H, it holds that By UE = O iff B, U E |= O.
Then, forany E, we have Th(B, U E) = Th(B2 U E). That
is, B UE = B> U FE holds for any E. This implies B; = B»
when E = 0. |

The complexity of abductive equivalence in the proposi-
tional case can be given as follows.

Lemma3.7 [1] Let A = (D, W) be a prerequisite-free nor-
mal default theory. Then, aformula ¢ istruein all extensions
of Aiff A" = (D, W U {¢}) and A are equivalent.

Theorem 3.8 Deciding explainable equivalence in proposi-
tional abduction is I1¥ -complete.

Proof. By Corollary 3.2 and Lemma 3.7, cautious reasoning
in default logic can be transformed to explainable equiva-
lence via equivalence of default theories. This transforma-
tion is obviously feasible in polynomial time. Because cau-
tious reasoning from prerequisite-free normal default theo-
ries is IIZ"-complete [6], the decision problem of explainable
equivalence is I1% -hard.

We now prove membership in II". Two abductive frame-
works A; = (FoL,B;,H;) and Ay = (FOL, Bs, H») are
not explainably equivalent iff there is an extension of B
with respect to H; which is not an extension of By with re-
spect to H,. Given a subset S C H; as a guess, deciding if
X = Th(B; U S) is an extension of By with respect to H;
can be checked by computing the “reduct” S’ of H; by X
and then checking if B; US = B; U S’. Here, computing
the reduct requires satisfiability tests, and this computation as



well as testing logical equivalence can be done in polynomial
time with an NP-oracle. Once we know that X is an exten-
sion of By with respect to H;, we need to check if X is notan
extension of B, with respect to H, which can also be done
in the same way as the former test. Thus, we can construct
a polynomial-time nondeterministic Turing machine with an
NP-oracle to decide if A; and A, are not explainably equiv-
alent. Hence, the original problem is the complement of this,

and belongs to coNPNP = 12, o

Theorem 3.9 The following decision problems in proposi-
tional abduction are coNP-compl ete.

(1) Explainable equivalence of two compatible abductive
frameworks.

(2) Explainable equivalence of two assumption-free abduc-
tive frameworks.

(3) Explanatory equivalence of two abductive frameworks.

Proof. By Corollaries 3.4 and 3.5 and Theorem 3.6, these
problems can be solved by checking logical equivalence of
two propositional theories, which is coNP-complete. a

4 Abductive Logic Programming

Abductive logic programming (ALP) is another popular for-
malization of abduction in Al [12; 3]. Background knowl-
edge in ALP is called a logic program, and the candidate hy-
potheses are given as literals called abducibles. The most
significant difference between abduction in FOL and ALP is
that ALP allows the nonmonotonic negation-as-failure oper-
ator not in background knowledge. In abduction, addition of
hypotheses may invalidate explanations of some observations
if the background theory is nonmonotonic.
Recall that a (logic) program is a set of rules of the form

Ly;---;Lg;not Liyq;---;n0t Ly

—Lit1,..., Ly, not Lipy1,...,n0t L,

where each L; is aliteral (n > m > 1 > k > 0), and not
is negation as failure (NAF). The symbol ; represents a dis-
junction. The left-hand side of the rule is the head, and the
right-hand side is the body. A rule with variables stands for
the set of its ground instances. In this paper, the semantics
of a logic program is given by its answer sets [5; 9], while
another semantics can be considered as well in ALP [12;
3]. Problem solving by representing knowledge as a logic
program and then computing its answer sets is called answer
set programming (ASP).

Definition 4.1 An abductive (logic) program is defined as
a pair (P, A), where P is a logic program and A is a set
of literals called abducibles. Instead of using the notation
(ALP, P, A), we also use (P, A) to represent an abductive
framework whose underlying logic is ALP.

Definition 4.2 Let (P, .A) be an abductive program, and G
a conjunction of ground literals called observations. A set
E C Ais a (credulous) explanation of G in (P, A)* if every
ground literal in G is true in a consistent answer set of PUE.

! Another, skeptical notion for explanations is defined as E C A
such that G is true in all consistent answer sets of P U E.

Note that both abducibles and observations are restricted to
ground literals in ALP. However, it is known for this frame-
work that rules can be allowed in abducibles and that observa-
tions can contain NAF formulas as well as literals [8]. Defini-
tion 4.2 can also be represented in a different way as follows
[8]. A belief set (with respect to E) of an abductive program
(P, A) is a consistent answer set of a logic program P U E
where E C A. Then, E C A is an explanation of G if G is
true in a belief set of (P, A) with respect to E.

Definition 4.3 Let A, = (P, A1) and Ay = (P, As) be
abductive programs. A; and A, are explainably equivalent
if, for any ground literal G, G is explainable in A, iff G is
explainable in A,. A; and A, are explanatorily equivalent if,
for any conjunction of ground literals G, E is an explanation
of G in A, iff E is an explanation of G in As.

Explainable equivalence in ALP guarantees the same ex-
plainability for any ground literal as a single observation, but
it does not matter how each observation is explained. Hence,
we do not have to care about whether multiple observations
can be jointly explained by a common explanation. On the
other hand, explanatory equivalence in ALP guarantees that,
any conjunction (or set) of observations 2 has exactly the
same credulous explanations. Hence, explanatory equiva-
lence implies that any set of abducibles E C A should ex-
plain the same set of observations in each abductive program.

We now show that explainable equivalence in ALP can be
checked by comparing the belief sets of two abductive pro-
grams. Because there exist several methods to compute belief
sets using ASP [21; 8; 9], checking explainable equivalence
is also possible using such methods. In the following, we de-
note the set of all belief sets of (P, A) as BS(P, A).

Theorem 4.1 Abductive programs (P;, A;) and (P, As)
are explainably equivalent iff

U s= U =

SGBS(P17A1) SGBS(P27.A2)

Proof. Recall that E C A is an explanation of a ground lit-
eral G iff G is true in a belief set of (P, A) with respect to
E. Then, the set of all explainable literals are precisely those
literals contained in some belief sets of (P, A) with respect to
some E. Hence, the union of the belief sets of (P, A) are ex-
actly the set of literals explainable in (P, A). Therefore, two
abductive programs are explainably equivalent iff the unions
of the belief sets of two abductive programs coincide. O

In some case of compatible problems, explanatory equiva-
lence can be easily verified. Here, a logic program is definite
if every its rule is NAF-free and has exactly one atom in the
head and only atoms in the body. A definite program has a
unique answer set that is equivalent to its least model. An
abductive program (P, A) is called definite if P is a definite
logic program and A4 is a set of atoms.

Coradllary 4.2 Two definite abductive programs (P;, A;)
and (P», A,) are explainably equivalent if the least model
of P; U A; coincideswith that of P, U As>.

2\We assume that the set of observations includes the special atom
T, which represents the empty conjunction of observations. Note
that T is always true in any consistent set of ground literals.



Example4.1 Given the common set of abducibles A =
{a, b} and three logic programs:

P = {p+a, q«<b}
P2 = {p<—b, q(_a}a
Py = {p<_, q < a, Fa,b}:

the three abductive programs (P;, A) (for i = 1,2,3) are
all explainably equivalent, but none of them are explanato-
rily equivalent. In particular, the least model of P, U A is
{p, q,a,b}, which is identical to that of P, U A. Ps is not
definite because of the third rule, but (P3, A) has three belief
sets: {p}, {p,q,a}, {p, b}, the union of which is equal to that
of (P;, A) fori =1, 2.

Explanatory equivalence in ALP, on the other hand, re-
quires a more semantical notion of logic programming.® For
this purpose, we need to utilize the concept of equivalence in
logic programming and ASP.

There are several notions for equivalence in logic program-
ming, and weak equivalence and strong eguivalence are most
well known. We say that two programs are weakly equiva-
lent if they simply agree with their answer sets. The notion
of weak equivalence is similar to that of logical equivalence
in FOL and other classical logics. Given two abductive pro-
grams (P;, A) and (P,, A), however, weak equivalence of
Py and P is not a sufficient condition for explanatory equiv-
alence of them, and is not even a sufficient condition for ex-
plainable equivalence. Weak equivalence is meaningful only
when the abducibles are empty.

Proposition 4.3 Abductive programs (P, ) and (P, () are
explanatorily equivalent iff P, and P, are weakly equivalent.

On the other hand, strong equivalence [14] is a more
context-sensitive notion for equivalence of logic programs.
Two logic programs P; and P, are said to be strongly equiva-
lent if for any additional logic program R, P; URand P,UR
have the same answer sets. When we allow NAF in logic
programs, weak equivalence is too fragile as a criterion. For
example, {p < nota} and {p < } are weakly equiva-
lent with the same unique answer set {p}, but adding a to
both results in the withdrawal of p in the former.  Often,
we can restrict the language for additional programs R to
some subset R of the whole language of programs. Then,
two programs P; and P, are said to be strongly equivalent
with respect to R if P, U R and P, U R have the same answer
sets for any program R C R [10]. The equivalence notion
with such restriction is called relative strong equivalence [10;
24]. Using this notion, explanatory equivalence can be char-
acterized as follows.

Theorem 4.4 Two abductive programs (P;, .A) and (P,, A)
are explanatorily equivalent iff P, and P, are strongly equiv-
alent with respect to A.

Proof. Suppose that (P;,.A) and (P»,.4) are explanatorily
equivalent. Then, for any conjunction G of literals and any

SExplanatory equivalence of (P, A) and (P>, A) implies
BS(P., A) = BS(P:, A), but the converse does not hold. For
example, when P, = {a «, p + a}, P> = {a + nota, p < a}
and A = {a}, BS(P1, A) = BS(P>, A) = {{a,p}}. However, §
is an explanation of p, a and T in (Py, A}, but is not in (P>, A).

E C A, it holds that, E' is an explanation of G in (P, A) iff
E is an explanation of G in (P>, A). The latter equivalence
then implies that, for any G and any E, we have that, G is
true in a belief set of (Py,.A) with respect to E iff G is true
in a belief set of (P>, A) with respect to E. Then, for any G
and any E, G is true in an answer set of P; U E iff G is true
in an answer set of P, U E. That is, for any E and any set
S of literals, S is an answer set of P, U E iff S is an answer
set of P, U E. Hence, P; and P, are strongly equivalent with
respect to .A. The converse direction can also be proved by
tracing the above proof backward. O

Example4.2 Given the common set of abducibles A =
{a, b}, consider three programs

P = {p+a, a+b},
P, = {p+a, p<b a+b},
P; = {p«b a+>d}.

Then, the three abductive programs (P;, A) (fori = 1,2,3)
are explainably equivalent. Although (P;, .A) is explanato-
rily equivalent to (P, A), it is not to (Ps,.4) [20]. In fact,
P, and P; are strongly equivalent with respect to A, while
P, and P;5 are not because the addition of a derives p in P
but this is not the case in P3. This example shows that un-
fold/fold transformation [23] does not preserve explanatory
equivalence in ALP [20] even when P; and P, are definite.

The complexity results of abductive equivalence in ALP
are given as follows.

Theorem 4.5 Deciding explainable equivalence in proposi-
tional ALPisin AL,

Proof. Explanation-finding, i.e., deciding if each literal has
an explanation in an ALP, is a %1’ -complete problem [3]. To
decide explainable equivalence, we need to check if explain-
ability agrees in two abductive frameworks for each literal.
Thus we can construct a polynomial-time deterministic Tur-
ing machine with an oracle for the explanation-finding prob-
lem in order to decide explainable equivalence. Hence, the

problem is in P¥2 = AP, i

Theorem 4.6 Deciding explainable equivalence in proposi-
tional ALP isTIZ -hard.

Proof. The problem contains the case that the abducibles are
empty. In this case, explainable equivalence and explanatory
equivalence coincide. Then, by Proposition 4.3, the problem
reduces to deciding weak equivalence of two logic programs,
which is known to be T1Z’-complete [16]. i

Corollary 4.7 Explainable equivalence of two definite ab-
ductive programs can be decided in polynomial time.

Theorem 4.8 Deciding explanatory equivalence in proposi-
tional ALP isTIZ -complete.

Proof. From a set A of literals, we construct a logic program

,U/(A) = {6l;n0t5l —, 1«9 | le A},

where d; is a new atom which is uniquely associated with 1.
Then, it can be shown that, P; and P, are strongly equivalent
with respect to A iff P/ = P,Uu(A) and Py = PaUpu(A) are
weakly equivalent. By Theorem 4.4, explanatory equivalence
of (P, A) and (P», A) reduces to weak equivalence of P/
and Py, which is I’ -complete [16]. 0



5 Conclusion

We have introduced the notion of abductive equivalence in
this paper. We have considered two definitions of abduc-
tive equivalence in two logics. Two important differences be-
tween FOL and ALP as the underlying logics are that (1) ex-
plainability is considered for all formulas in FOL while only
literals are considered as observations in ALP, and that (2)
nonmonotonicity by NAF appears in ALP while this is not the
case in FOL. Intuitively, the restriction of observations to lit-
erals in ALP gives more chances for two abductive programs
to be equivalent, but the existence of nonmonotonicity in ALP
makes comparison of abductive programs more complicated.
In each case, we can observe that explanatory equivalence is
not computationally harder than explainable equivalence.

In [11], the notion of abductive equivalence in this paper
is further applied to extended abduction [7], where hypothe-
ses can not only be added to a program but also be removed
from the program to explain an observation. In extended ab-
duction, explanatory equivalence can be characterized by the
notion of update equivalence [10].

We have observed that logical equivalence of background
theories in FOL or weak equivalence of logic programs does
not simply imply abductive equivalence except for some very
simple cases. That is why we need to characterize abduc-
tive equivalence in terms of other known concepts in classi-
cal or nonmonotonic logics. Having such characterizations in
this paper, the next target is to develop transformation tech-
niques which preserve abductive equivalence. In another fu-
ture work, we can consider other underlying logics for back-
ground theories, hypotheses and observations as well as the
criteria of best explanations for abductive equivalence.

Acknowledgment
We thank Kazuhisa Makino for his valuable comments.

References

[1] Jiirgen Dix. Default theories of Poole-type and a method
for constructing cumulative version of default logic. In:
Proceedings of ECAI-92, pages 289-293, 1992.

[2] Thomas Eiter and George Gottlob. The complexity of
logic-based abduction. J. ACM, 42(1):3-42, 1995.

[3] Thomas Eiter, George Gottlob and Nicola Leone. Ab-
duction from logic programs: semantics and complex-
ity. Theoretical Computer Science, 189:129-177, 1998.

[4] Thomas Eiter and Kazuhisa Makino. Abduction and the
dualization problem. In: Proceedings of the 6th Inter-
national Conference on Discovery Science, LNAI 2843,
pages 1-20, Springer, 2003.

[5] Michael Gelfond and Vladimir Lifschitz. Classical
negation in logic programs and disjunctive databases.
New Generation Computing, 9:365-385, 1991.

[6] George Gottlob. Complexity results for nonmonotonic
logics. J. Logic and Computation, 2:397-425, 1992.

[7]1 Katsumi Inoue and Chiaki Sakama. Abductive frame-

work for nonmonotonic theory change. In: Proceedings
of 1JCAI-95, pages 204-210, Morgan Kaufmann, 1995.

[8] Katsumi Inoue and Chiaki Sakama. A fixpoint charac-
terization of abductive logic programs. J. Logic Pro-
gramming, 27:107-136, 1996.

[9] Katsumi Inoue and Chiaki Sakama. Negation as failure
in the head. J. Logic Programming, 35(1):39-78, 1998.

[10] Katsumi Inoue and Chiaki Sakama. Equivalence of
logic programs under updates. In: Proceedings of the
9th European Conference on Logicsin Artificial Intelli-
gence, LNAI 3229, pages 174-186, Springer, 2004.

[11] Katsumi Inoue and Chiaki Sakama. On abductive equiv-
alence. In: Lorenzo Magnani, editor, Model-based Rea-
soning in Science and Engineering, submitted, 2005.

[12] A.C. Kakas, R. A. Kowalski and F. Toni. The role of ab-
duction in logic programming. In: D. M. Gabbay, C.J.
Hogger and J. A. Robinson, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming, Vol-
ume 5, pages 235-324, Oxford University Press, 1998.

[13] Hector J. Levesque. A knowledge-level account of
abduction (preliminary version). In: Proceedings of
I1JCAI-89, pages 1061-1067, Morgan Kaufmann, 1989.

[14] Vladimir Lifschitz, David Pearce and Agustin Valverde.
Strongly equivalent logic programs. ACM Transactions
on Computational Logic, 2:526-541, 2001.

[15] V. Wiktor Marek, Jan Treur and Mirostaw Truszczynski.
Representation theory for default logic. Annals of Math-
ematics and Artificial Intelligence, 21:343-358, 1997.

[16] Emilia Oikarinen and Tomi Janhunen. Verifying the
equivalence of logic programs in the disjunctive case.
In: Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning,
LNAI 2923, pages 180-193, Springer, 2004.

[17] David Poole. A logical framework for default reasoning.
Artificial Intelligence, 36:27-47, 1988.

[18] Raymond Reiter. A logic for default reasoning. Artifi-
cial Intelligence, 13:81-132, 1980.

[19] Raymond Reiter. A theory of diagnosis from first prin-
ciples. Artificial Intelligence, 32:571-95, 1987.

[20] Chiaki Sakama and Katsumi Inoue. The effect of par-
tial deduction in abductive reasoning. In: Proceedings
of the 12th International Conference on Logic Program-
ming, pages 383-397, MIT Press, 1995.

[21] Ken Satoh and Noboru Iwayama. Computing abduction
by using the TMS. In: Proceedings of the 8th Interna-
tional Conference on Logic Programming, pages 505—
518, MIT Press, 1991.

[22] Bart Selman and Hector J. Levesque. Support set se-
lection for abductive and default reasoning. Artificial
Intelligence, 82(1-2):259-272, 1996.

[23] Hisao Tamaki and Taisuke Sato. Unfold/fold transfor-
mation of logic programs. In: Proceedings of the 2nd
Inter national Conference on Logic Programming, pages
127-138, Uppsala University, Uppsala, Sweden, 1984,

[24] Stefan Woltran. Characterizations for relativized no-
tions of equivalence in answer set programming. In:
Proceedings of the 9th European Conference on Logics
in Artificial Intelligence, LNAI 3229, pages 161-173,
Springer, 2004.



