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Abstract—In logic programming, partial evaluation (PE) per-
forms unfolding rules in advance to reduce the cost of inferencing.
Recently, PE of logic programs has been implemented in vector
spaces by computing the powers of matrix representations. It has
been reported that linear algebraic PE substantially enhances
the practical performance of linear algebraic methods for logic
programming. However, most recent research has focused exclu-
sively on And-rules, assuming that their dependency graph is
acyclic. In this paper, we introduce cycle-resolving techniques
to ensure that linear algebraic PE works effectively even with
cycles in the program. Additionally, we demonstrate that linear
algebraic PE can also be extended to accommodate Or-rules.
Moreover, we propose using eigendecomposition and Jordan
normal form to conduct PE in vector spaces. We compare the
proposed techniques on a set of acyclic and cyclic logic programs
to evaluate their effectiveness. It is shown that the iteration
method for PE, especially with sparse format, is the most efficient
one in general cases. However, the decomposition method has
the potential for future research to leverage eigenvalues and
eigenvectors of program matrices for reasoning.

Index Terms—Logic programming, Partial evaluation, Linear
algebra

I. INTRODUCTION

Recent works have explored using linear algebraic methods
as a compelling alternative to symbolic methods for logical
inference [1; 2; 3; 4]. Researchers have attempted to extend
the capability of linear algebraic methods for logical inference
in various ways such as: stable model computation [3; 4], 2-
valued and 3-valued completion semantics [5], constructing
And/Or Boolean networks from state transitions [6], matrix-
based differentiable rule-learning framework [7; 8].

Linear algebraic approaches have also been extended to
Partial Evaluation (PE) in Logic Programming (LP) [9].
Nguyen et al. reported significant runtime reductions on both
synthetic and real data, especially for transitive closures of
large network datasets [9]. A similar linear algebraic PE con-
cept has been applied to Propositional Horn Clause Abduction
Problem (PHCAP), showing remarkable performance gains
[10]. Although applying for different reasoning tasks, the
main idea behind linear algebraic PE in both [9] and [10]
is to compute the powers of matrix representations of logic
programs ([10] employs abductive matrix, but it is actually
the transposed version of the program matrix in [9]). Both
papers use a unified representation of a logic program in
its standardized form to perform PE in an iterative manner.
However, their methods only focus on the And-rules in the
program, while the Or-rules remain unchanged. Additionally,

they assume that the dependency graph of the program is
acyclic and do not consider the cyclic case.

In this work, we focus on extending the capability of
linear algebraic PE. First, we propose to separate the matrix
representation of a logic program into two parts: one for And-
rules and the other for Or-rules. In short, an And-rule is a
rule that has a conjunction of literals in its body, the head
is True only if all its body literals are True. On the other
hand, the body of an Or-rule is a disjunction of literals, the
head is True if at least one of its body literals is True. Each
part (And-rules or Or-rules) of a logic program has different
logical meanings but can be treated equally in terms of linear
algebraic PE. We also propose a solution to resolve cycles in
the dependency graph of the program to extend to the cyclic
case. Moreover, we introduce a novel way to realize PE by
leveraging the eigenvalues and eigenvectors.

The rest of this paper is organized as follows: Section II
reviews background knowledge; Section IV presents the itera-
tion method for PE and cycle-resolving techniques; Section V
demonstrates linear algebraic PE using matrix decomposition;
Section VI illustrates comparison of proposed PE methods;
finally Section VII concludes the paper.

II. BACKGROUND

In this paper, we focus on propositional logic programs over
a finite (nonempty) set of atoms A. A program P is called a
normal logic program if every rule r ∈ P follows the form:

h← b1 ∧ ... ∧ bl ∧ ¬bl+1 ∧ ... ∧ ¬bk (k ≥ l ≥ 0) (1)

where h and bi are atoms in A. For short, we write head(r)
and body(r) to denote the set of literals in the head and body of
a rule r, respectively. We use head(r) mainly to refer to a sin-
gle atom in the head of a rule r, so we can write head(r) in set
operations as a single atom without ambiguity. Additionally,
body(r) can be partitioned into body+(r) = {b1, b2, ..., bl}
and body−(r) = {¬bl+1, ¬bl+2, ..., ¬bk} which refers to the
positive and negative literals in body(r). A normal rule r is
called a fact if body(r) = ∅, a constraint if head(r) = ∅.
A fact or a constraint can also be written respectively as
head(r)← ⊤ and ⊥ ← body(r), where ⊤ and ⊥ are special
symbols representing True and False. In case body−(r) = ∅,
the rule r is called a definite rule. A normal program P is a
definite program if body−(r) = ∅ for every rule r ∈ P. A
logic program P is called a Singly-Defined (SD) program if
head(r1) ̸= head(r2) for any two different rules r1, r2 in
P. When P contains more than one rule r1, . . . , rn (n > 1)
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with the same head h such that head(r1) = head(r2) · · · =
head(rn) = {h}, replace those rules with a set of new rules:
{h ← b1 ∨ . . . ∨ bn, b1 ← body(r1), . . . , bn ← body(rn)}
(n > 1), where b1, . . . , bn are newly introduced atoms. The
resulting program is called a standardized program, denoted
as Π. Accordingly, Π can be seen as a finite set of rules of
And-rules (2) and Or-rules (3), and there are no two rules
with the same head (SD condition):

h← b1 ∧ b2 ∧ ... ∧ bl (l ≥ 0) (2)
h← b1 ∨ b2 ∨ ... ∨ bl (l ≥ 2) (3)

For simplicity, we still use the notation ¬p in a standardized
program Π but, without ambiguity, imply that ¬p and p are
two “distinct” variables with a “special” relation.

Example 1. Given a logic program P1 = {a ← b ∧ c, a ←
f, a ← ¬h, b ← c ∧ d, c ← a, c ← ¬g, c ← ¬d, d ←
e, e ← d, f ← a, f ← g, g ← a, g ← ¬c, h ← ¬a, ←
c ∧ h, ← b ∧ a}.
Standardized logic program: Π1 = {a ← x1 ∨ f ∨ ¬h, b ←
c ∧ d, c ← a ∨ ¬g ∨ ¬d, d ← e, e ← d, f ← a ∨ g, g ←
a ∨ ¬c, h← ¬a, x1 ← b ∧ c, ← c ∧ h, ← b ∧ a}.

Here in Example 1, note that we do not need to introduce
new variables for each body atom in f ← a, f ← g and
g ← a, g ← ¬c, because these rules have single-literal bodies.
In case the rule body has more than one atom, we need to
introduce a new variable for each body atom and rewrite the
rule as a disjunction of these new variables. Further details
about the standardization method can be found in [11].

III. PROGRAM MATRICES AND DEPENDENCY GRAPHS

A. Matrix representation of logic programs

We follow a similar program matrix definition as [12]. Our
new observation is that a standardized program Π can be seen
as a quadruple Π = ⟨Π∧,Π∨,ΠF ,ΠC⟩ where Π∧ is the set of
non-factual And-rules ((2) but strictly l > 0), Π∨ is the set of
Or-rules (3), ΠF is the set of facts ((2) where l = 0) and ΠC is
the set of constraints ((2) where h = ⊥). For convenience, we
assume there is a way to index all literals in a logic program
incrementally without ambiguity so that we can easily map sets
of literals to vectors. We shall define the matrix representation
of Π as a set of matrices and vectors as follows.

Definition 1 (Matrix of And-rules/Or-rules). Let Π =
⟨Π∧,Π∨,ΠF ,ΠC⟩ be a standardized program. Then the ma-
trix of And-rules MΠ∧ (Or-rules MΠ∨ ), where MΠ∧ ∈
RnΠ×nΠ (MΠ∨ ∈ RnΠ×nΠ ), are defined as follows:

• MΠ{ } [i, j] =
1

l
if there is a rule ri in Π{ } (ri either in

the form of (2) or (3) respectively if Π{ } is Π∧ or Π∨) where
l = |body(ri)| ̸= 0,
• MΠ{ } [i, j] = 0 otherwise.

Following a similar manner, we can define vector of negations,
vector of facts, vector of And-rule heads, vector of Or-
rule heads, and matrix of constraints. Figure 1 visualizes
the matrix/vector representations of Π1 in Example 1. By
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Fig. 1: Matrix/vector representations of Π1.

definitions, non-zero elements of MΠ∧ , MΠ∨ , and MΠC are
normalized by the number of body literals in the corresponding
rule. It is possible to define the matrix without normalization as
long as being consistent. In the context of logic reasoning, we
follow the normalized representation as it is more convenient
to define True as 1 and False as 0.

We shall show the connection between this matrix repre-
sentation and the one defined in [12] that has been adopted
in [9] and [10] to define linear algebraic PE. Before that, we
need to define two thresholding functions:

Definition 2 (Thresholding functions).

θ⇓(x) =

{
1 if x ≥ 1

0 otherwise
, and θ⇑(x) =

{
1 if x > 0

0 otherwise
where x is a scalar and can be extended to a vector, or a
matrix in an element-wise way.

The program matrix MΠ can be constructed as follows:

MΠ = MΠ∧ + θ⇑
(
MΠ∨

)
+ diag(vΠF ⊕θ⇓ vneg(Π)) (4)

where ⊕θ⇓ is vector add with θ⇓-thresholding, diag turns
an input vector into a diagonal matrix. The reason for ⊕θ⇓

is that there might be a chance where atoms (known to be
False are included as facts) and negations are overlapping.
Program matrix MΠ in (4) is equivalent to the one defined
in [12] that can be used either for fixpoint computation in
stable model computation [13] or for 1-step abduction in Horn
abduction (with restrictions to Horn clauses) [10]. The reason
for the redefinition is to make the matrix representation more
intuitive so that we can develop a general PE approach and
cycle-resolving techniques to both And-rules and Or-rules.

B. Dependency graphs

The concept of “dependency graph” has been employed in
several studies i.e. [14]. In this section, we extend the concept
of dependency graph to the case of standardized programs.

Definition 3 (Dependency graph). Given a normal logic
program P. The dependency graph of P is a directed graph
GP = (VP,EP) where VP is the set of atoms in P and EP is
determined as follows:
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• There is a positive edge (u, v) in EP if there is a rule
r ∈ P such that u ∈ head(r) and v ∈ body+(r).

• There is a negative edge (u, v) in EP if there is a rule
r ∈ P such that u ∈ head(r) and v ∈ body−(r).

Figure 2a draws the dependency graph of P1 in which positive
and negative edges are labled with + and −, respectively.

In many studies, the definition of positive dependency graph
is usually preferred over the general dependency graph [15].
Given a normal logic program P, the positive dependency
graph of P is a directed graph G+

P = (VP,E
+
P ) such that

G+
P ⊆ GP where GP is the dependency graph of P such that

E+
P includes only positive edges of EP. We extend dependency

graph to the case of a standardized program Π. Regardless of a
rule in Π∧ or Π∨ may differ as a conjunction or disjunction,
we can always define the positive dependency graph of Π∧

and Π∨ separately, denoted as GΠ∧ (visualized as solid lines)
and GΠ∨ (visualized as dash lines) respectively.

Definition 4 (And-Or dependency graph). Given a normal
logic program P, its standardized program is Π. The And-
Or dependency graph of Π is a directed graph GΠ such that
GΠ = GΠ∧ ∪GΠ∨ .

As can be seen in Figure 2d and Figure 2e, each graph GΠ∧

or GΠ∨ only contains edges of the same type. However, in
the And-Or dependency graph GΠ in Figure 2c, both types
of edges are presented. It is easy to construct GΠ from GΠ∧

and GΠ∨ by merging the two graphs without any conflict. The
following important properties of GΠ can be observed:

• A node in GΠ is called an And-node if it has only
incomming solid edges. Similarly, a node in GΠ is an
Or-node if it has only incoming dash edges.

• A node cannot have both types of incoming edges (it is
not the case for outgoing edges). In other words, a node
can only be either an And-node or an Or-node.

• From GΠ, we can interpret that an And-node is True
iff all original nodes of its incoming edges are True.
Similarly, an Or-node is True iff at least one of the
original nodes of its incoming edges is True.

By definition, the And-Or dependency graph can capture
the semantical meaning of the original Π∧ and Π∨. More
importantly, a program Π∧ and its dependency graph GΠ∧

(similar to the case of Π∨ and GΠ∨ ) are related directly
because the program matrix and the adjacency matrix of
the dependency graph are equivalent. Note that if all non-
zero elements are 1, the program matrix MΠ∧ is exactly the
adjacency matrix of the dependency graph GΠ∧ . However,
to be consistent with the choice of normalizing rule body
to define truth values in the previous section, we denote the
adjacency matrix of GΠ∧ by θ⇑(MΠ∧). Similarly, we denote
θ⇑(MΠ∨) as the adjacency matrix of GΠ∨ .

IV. LINEAR ALGEBRAIC PARTIAL EVALUATION

A. Partial evaluation with iteration method

Sakama et al. first proposed the idea of PE for computing
least models of logic programs using linear algebra [16]. Later,

a refined version of the paper was published in [9]. Extending
from this idea, Nguyen et al. have developed PE with reduct
abductive matrix (Definition 5 in [10]) for Horn abduction
[10]. The reduct abductive matrix is obtained by taking the
abductive matrix (a transposed matrix of MΠ - Definition 4
in [17]) then removing all columns w.r.t. Or-rules (3) and
setting 1 at the diagonal corresponding to all atoms which are
heads of these Or-rules. The idea can be simplified as we
take MΠ∧ then append to the diagonal of MΠ∧ all atoms we
want to preserve (Or-rule heads, facts, negations, ...) in the
partially evaluated program. Then we take the resulting matrix
to multiply with itself iteratively until a fixed point is reached.
We formalize this idea in the following definitions.

Definition 5 (Partial evaluation of And-rules). Given a
normal logic program P, its standardized program is Π. The
partially evaluated matrix of Π w.r.t. And-rules, denoted as
peval(Π∧), is defined as follows:

M̂Π∧ = MΠ∧ + diag(vΠF ⊕θ⇓ vneg(Π) ⊕θ⇓ vhead(Π∨))

M0 = M̂Π∧

Mi = Mi−1 ·Mi−1 (i ≥ 1) (5)

Definition 6 (Partial evaluation of Or-rules). Given a normal
logic program P, its standardized program is Π. The partially
evaluated matrix of Π w.r.t. Or-rules, denoted as peval(Π∨),
is defined as follows:

M̂Π∨ = MΠ∨ + diag(vΠF ⊕θ⇓ vneg(Π) ⊕θ⇓ vhead(Π∧))

M0 = M̂Π∨

Mi = Mi−1 ·Mi−1 (i ≥ 1) (6)

Both Definition 5 and Definition 6 are almost identical except
for the starting point with different matrices MΠ∧ and MΠ∨

respectively. We say (5) and (6) reach a fixed point at a step
k (k ≥ 1) if Mk = Mk−1. Because the matrix multiplication
performs unfolding rules [9], intuitively, the fixed point is
reached when the program is fully unfolded. For the case
of acyclic programs, it is guaranteed that the fixed point is
reached after a finite step of iterations [17].

Proposition 1. For any program P with MΠ∧ (and MΠ∨ ) of
the size n× n such that the corresponding dependency graph
GΠ∧ (and GΠ∧ ) is acyclic, the sufficient number of PE steps
to reach a fixed point is k = ⌈log2(n)⌉.

Proof. Consider the case with a program P2 = {a1 ←
a2, a2 ← a3, . . . , an−1 ← an, }. Obviously, this program has
the longest dependency chain we can create from n atoms.
Indeed, unfolding P2 at the first step we have {a1 ← a3, a2 ←
a4, a3 ← a5, . . . , an−1 ← an}, at the second step we have
{a1 ← a5, a2 ← a6, a3 ← a7 . . . , an−1 ← an}, and so
on. According to the pattern, if we perform the PE for k
steps, then the condition of the fixed point is reached when
2k ≥ n ⇔ k ≥ log2(n). k is an integer, so we have
k = ⌈log2(n)⌉. The proof is identical for the case of Π∨.

At a fixed point, we can also compute Mk = (M̂Π∧)2
k

(k ≥ 1)

(or Mk = (M̂Π∨)2
k

(k ≥ 1) for the case of Or-rules) that
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Fig. 2: Illustrations of dependency graphs of the normal logic program P1 and its standardized program Π1 in Example 1.

is basically computing powers of a matrix. Then, we define
peval(Π∧) = unpack((M̂Π∧)2

k

) is the partially evaluated
program of Π∧, where unpack((M̂Π∧)2

k

) is a series of actions
including: (s1) reversing the effect of appending vΠF ⊕θ⇓

vneg(Π) ⊕θ⇓ vhead(Π∨) to the diagonal, (s2) removing all row
r if the sum of non-zero elements on that row in (M̂Π∧)2

k

is less than 1, and (s3) normalizing non-zero elements of
(M̂Π∧)2

k

to satisfy Definition 1. Step (s2) is important as
an And-node is True only if all its body atoms are True.
Similarly, we define peval(Π∨) = unpack((M̂Π∨)2

k

) is the
partially evaluated program of Π∨, where unpack((M̂Π∨)2

k

)
is a series of actions including: (s1) reversing the effect of
appending vΠF ⊕θ⇓ vneg(Π)⊕θ⇓ vhead(Π∧) to the diagonal, and
(s2) normalizing non-zero elements of (M̂Π∨)2

k

to satisfy
Definition 1. peval(Π∧) and peval(Π∨) are introduced to
simplify the notation in the following sections.

We have presented the basic idea of linear algebraic PE of
logic programs through iteratively compute powers of matrix
(M̂Π∧ and M̂Π∨ ) until a fixed point is reached. However, a
fixed point is not guaranteed in case there is a cycle in the
corresponding dependency graph (GΠ∧ or GΠ∨ respectively).
For example, consider the visualization of P1 in Figure 2
where GΠ∧

1
has a cycle {d, e} while GΠ∨

1
has two cycles

{a, f} and {a, f, g}. In this example, (5) and (6) cannot reach
a fixed point, consequently peval(Π∧

1 ) and peval(Π∨
1 ) cannot

be computed. In the next section, we will introduce cycle-
resolving techniques to ensure that this method also works
even with cycles in GΠ∧ and GΠ∨ .

B. Cycle resolving

First, we define the concept of a local cycle of Π∧ and Π∨.

Definition 7 (Local cycle in GΠ∧ and GΠ∨ ). Given a normal
logic program P, its standardized program is Π. A set L of

atoms is called a local cycle in GΠ∧ (or GΠ∨ ) if L is strongly
connected in GΠ∧ (or GΠ∨ ).

The term local cycle is used to distinguish from the general
concept of a cycle in GΠ. For example in Figure 2, there
are cycles mixing both solid and dash edges at the same time
such as {a, c, x1}. These are not (yet) the target of our cycle-
resolving techniques in this paper. Our main focus is to resolve
the local cycles, such as {d, e} in GΠ∧

1
, and {a, f}, {a, f, g} in

GΠ∨
1

. We can enumerate all local cycles by identifying every
Strongly Connected Component (SCC) in GΠ∧ and GΠ∨ . This
can be done in polynomial time using Tarjan’s algorithm [18]
or the algorithm in [19] which can be implemented in linear
algebraic way with GraphBLAS1 [20].

After identifying the local cycles, let us consider how
to resolve them. The main idea is to base on their logical
property to translate a cycle into a set of rules preserving the
same logical meaning but does not affect the computation in
Definition 5 and Definition 6. For a cycle L in GΠ∧ , obviously,
there is no other way to make an And-node in L become True
other than the cycle L itself. On the other hand, for a cycle L
in GΠ∨ , we can make an Or-node in L become True if there
is any body literal (outside from the cycle L) of that rule is
True. Accordingly, we propose the following cycle-resolving
techniques for And-rules and Or-rules respectively.

Algorithm 1: Cycle-resolving for And-rules

1: Identify all SCCs in GΠ∧ .
2: for each SCC L in GΠ∧ do
3: for each rule r ∈ Π∧ such that head(r) ∈ L do
4: Remove r (by setting the corresponding entries

of r in MΠ∧ to 0).

1GraphBLAS is an open-source API specification which defines standard
building blocks for graph algorithms in the language of linear algebra.
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Algorithm 2: Cycle-resolving for Or-rules

1: Identify all SCCs in GΠ∨ .
2: for each SCC L in GΠ∨ do
3: Let E = ∅
4: for each rule r ∈ Π∨ such that head(r) ∈ L do
5: E = E ∪ (body(r) \ L)
6: for each rule r ∈ Π∨ such that head(r) ∈ L do
7: Replace r by head(r)←

∨
q∈E

q.

After resolving the cycles, we can apply the linear algebraic
PE of And-rules and Or-rules as described in Definition 5
and Definition 6 respectively. Now we can prove that the
computation has a fixed point.

Proposition 2. Given a resolved matrix resolve(MΠ∧) (or
resolve(MΠ∨)) as input for the linear algebraic PE of And-
rules (or Or-rules), the fixed point is guaranteed to be reached
after a finite number of iterations.

Proof. There are two cases:
For the case of And-rules, all cycles in GΠ∧ are removed.
Hence, this case is identical to the case of acyclic programs in
that the computation in Definition 5 reaches a fixed point after
a finite number of iterations. For the case of Or-rules, cycles
still exist in GΠ∨ but all Or-rules such that their head nodes
are in a cycle are updated in a way that they have incoming
edges from all body literals related to a cycle but excluding
the cycle itself. This ensures that all possible ways to make
an Or-node in a cycle become True are considered, so no
new cases are created during the computation in Definition 6.
Thus, a fixed point is guaranteed.

Figure 3 demonstrates the linear algebraic PE of Π∧
1 and

Π∨
1 after resolving the cycles. We denote resolve(MΠ∧

1
) and

resolve(MΠ∨
1
) as the matrix representation of Π∧

1 and Π∨
1 after

applying Algorithm 1 and Algorithm 2 respectively.
For the case of And-rules, there is a cycle {d, e} correspond-
ing to two And-rules d ← e and e ← d. To resolve the
cycle, we simply remove it as illustrated in Figure 3a following
Algorithm 1. After all cycles are resolved, it is guaranteed that
the iteration method can reach a fixed point when computing
(resolve(M̂Π∧

1
))2

k

to obtain peval(Π∧
1 ).

For the case of Or-rules, there are 2 cycles {a, f} and
{a, f, g}. They all belong to a single SCC. Hence, we only
need to resolve {a, f, g} corresponding to three Or-rules:
a ← x1 ∨ f ∨ ¬h, f ← a ∨ g, g ← a ∨ ¬c. Following
Algorithm 2, we find E = {¬c,¬h, x1}. Next, we reset
all Or-rules corresponding to a, f , and g with the new
body {¬c,¬h, x1}. The resulting matrix resolve(MΠ∨

1
) is

illustrated in Figure 3e. Unlike the case of And-rules where
we remove the cycle, here we find all possibilities to make the
cycle become True then update the rules accordingly. After
all cycles are resolved, we can apply the iteration method
described in Definition 6 to compute peval(Π∨

1 ).
Combining peval(MΠ∧) and peval(MΠ∨)

To sum up, we have presented the basic idea of linear algebraic

PE. We have also introduced cycle-resolving techniques to
ensure that this method also works effectively even with cycles
in GΠ∧ and GΠ∨ . Finally, we can construct the partially
evaluated program matrix for logic inferencing in vector
spaces by combining peval(MΠ∧) and peval(MΠ∨):

peval(MΠ) = peval(Π∧) + θ⇑
(
peval(Π∨)

)
+diag(vΠF ⊕θ⇓ vneg(Π)) (7)

peval(MΠ) can be used for the fixpoint computation in the
same way as MΠ. A few modifications may be needed to
apply the idea to Horn abduction in [10], however, the main
idea remains the same. peval(MΠ) is expected to be more
efficient than MΠ in case it helps to reduce the number of
deduction steps to reach a fixpoint. Figure 3j-3k illustrates the
visualization of peval(MΠ1

) after combining peval(MΠ∧
1
)

and peval(MΠ∨
1
).

V. PARTIAL EVALUATION USING MATRIX DECOMPOSITION

A. Eigendecomposition

As we have seen in the previous sections, the main idea
of PE is to compute the powers of a program matrix. While
in linear algebra, it is known that powers of a matrix M can
be computed efficiently using its eigendecomposition M =
Q · A · Q−1, where A is a diagonal matrix of eigenvalues
and Q is a matrix of eigenvectors [21]. Then we can compute
Mn = Q·An ·Q−1 that is computationally more efficient than
computing Mn directly, because An is just the element-wise
power of the diagonal matrix A.

In this section, we will show how to apply eigendecompo-
sition to realize PE in logic programming. Let us consider a
simple example to illustrate the idea.

Example 2. Given a logic program P3 = {p← p∧q, q ← q∧
r, r ← q}. Standardized logic program (no change): Π3 = P3.

There is no Or-rule in Π3, so we only need to consider

MΠ∧
3

=


p q r

p 1/2 1/2
q 1/2 1/2
r 1

. For computing the eigenvalues,

it is more numerically stable to use the adjacency matrix

θ⇑(MΠ∧
3
) =


p q r

p 1 1
q 1 1
r 1

 instead of MΠ∧
3

. Next, we append

needed information to the diagonal to obtain θ⇑(M̂Π∧
3
), here

they are identical. Let us compute eigenvalues of θ⇑(M̂Π∧
3
):

det(θ⇑(M̂Π∧
3
) − λI) = 0 ⇔ (λ − 1)(λ2 − λ − 1) = 0.

Eigenvalues: λ1 = 1, λ2 = 1
2 (1 +

√
5), λ3 = 1

2 (1−
√
5).

Eigenvectors: v1 = ( 12 (3+
√
5), 1

2 (1+
√
5), 1), v2 = (1, 0, 0),

v3 = ( 12 (3−
√
5), 1

2 (1−
√
5), 1).

Eigendecomposition: θ⇑(M̂Π∧
3
) = Q ·A ·Q−1 where:

A =


p q r

p 1
q 1

2 (1 +
√
5)

r 1
2 (1−

√
5)

, Q =


p q r

p 1
2 (3 +

√
5) 1

2 (1 +
√
5) 1

q 1 0 0
r 1

2 (3−
√
5) 1

2 (1−
√
5) 1

.

When we obtain the eigendecomposition of θ⇑(M̂Π∧
3
), we

can compute powers of θ⇑(M̂Π∧
3
) efficiently. However, unlike

the iteration method in which we let the method determine
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Fig. 3: Visualization of the linear algebraic PE. (a)-(d) depicts the PE of Π∧
1 while (e)-(h) illustrates the PE of Π∨

1 . (i) and (j) compare the
original matrix MΠ1 and the final result peval(MΠ1). (k) shows the corresponding And-Or dependency graph of peval(Π1).

a fixpoint condition, here we need to determine the power n
in advance. Fortunately, we can set a sufficiently large n to
ensure that the fixpoint is reached following Proposition 1.
In this example, as n = 3, we have a sufficient number of
iterations to reach the fixpoint k = ⌈log2(3)− 1⌉ = 1, then
we just need to raise A to the power of k+1 = 2. Accordingly,

the partially evaluated matrix is: Q ·A2 ·Q−1 =


p q r

p 1 2 1
q 0 2 1
r 0 1 1

.

This matrix can be translated into a logic program:
peval(MΠ∧

3
) = {p ← p ∧ q ∧ r, q ← q ∧ r, r ← q ∧ r}

which is the partially evaluated program of Π∧
3 . Because there

is no Or-rule in this case, so peval(MΠ∧
3
) is also the partially

evaluated program of Π3.
Using eigendecomposition for PE is computationally more

efficient than the iteration method, especially when the number
of iterations is large. However, the eigendecomposition method
requires the matrix to be diagonalizable [21]. Unfortunately
for a program P, we usually see that MΠ∧ and MΠ∨ are not
diagonalizable. In such cases, we can use the Jordan Normal
Form (JNF) to compute the powers of a matrix.

B. Jordan normal form

In linear algebra, the JNF, also known as the Jordan
canonical form, is a specific type of upper triangular matrix.

Definition 8 (Jordan normal form [22]). Let Ji be a square

k × k matrix


λi 1

λi 1
. . .

. . .
λi 1

λi

 such that λi is identical on the

diagonal and there are 1s just above the diagonal. We call
each such matrix a Jordan λi-block. A matrix M is in JNF if

M =


J1

J2
. . .

Jp

.

It is proved that every square matrix in Rn×n can be decom-
posed into a matrix in JNF according to Jordan’s theorem [23].
Computing powers of a Jordan matrix M is straightforward:

Mn =


J1

J2
. . .

Jp


n

=


(J1)

n

(J2)
n

. . .
(Jp)

n

 that

can be simplified to computing powers of each Jordan block.
The power of a Jordan block Ji (k × k) can be computed

by: (Ji)
n =



λn
i

(
n
1

)
λn−1
i

(
n
2

)
λn−2
i . . . . . .

(
n

k−1

)
λn−k+1
i

λn
i

(
n
1

)
λn−1
i . . . . . .

(
n

k−2

)
λn−k+2
i

. . . . . . . . .
...

. . . . . .
...

λn
i

(
n
1

)
λn−1
i

λn
i


where

(
n
b

)
is the binomial coefficient describing the algebraic
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expansion of powers of a binomial.
Now let us consider an example using JNF for PE.

Example 3. Given a program: P4 = {p ← q, p ← r, q ←
s, q ← t, r ← ¬t, r ← ¬s, s← ¬t, s← ¬r, t← ¬r, t←
¬s}. Standardized logic program: Π4 = {p ← q ∨ r, q ←
s ∨ t, r ← ¬t ∨ ¬s, s← ¬t ∨ ¬r, t← ¬s ∨ ¬r}.

There is no And-rules, we only consider θ⇑(M̂Π∨
4
) =



p q r s t ¬r ¬s ¬t
p 1 1
q 1 1
r 1 1
s 1 1
t 1 1
¬r 1
¬s 1
¬t 1


. Solve the characteristic equation:

det(θ⇑(M̂Π∨
4
)− λI) = 0 ⇔ λ5(λ− 1)3 = 0.

1) λ1 = 0, algebraic multiplicity2 5, eigenvectors: v1 =

( 1 , 0, 0, 0, 0, 0, 0, 0)⊤ , v2 = (0, -1 , 1 , 0, 0, 0, 0, 0)⊤ ,
v3 = (0, 0, 0, -1 , 1 , 0, 0, 0)⊤ .

2) λ2 = 1, algebraic multiplicity 3, eigenvec-
tors: v4 = ( 2 , 2 , 0, 1 , 1 , 1 , 0, 0)⊤ ,
v5 = ( 2 , 1 , 1 , 0, 1 , 0, 1 , 0)⊤ , v6 =

( 2 , 1 , 1 , 1 , 0, 0, 0, 1 )⊤ .

Following the algorithm described in [23], one can find the
JNF of θ⇑(M̂Π∨

4
) = P · J ·P−1 where:

J =

p q r s t ¬r ¬s ¬t

p 0 1

q 0 1

r 0

s 0

t 0

¬r 1

¬s 1

¬t 1





, P =

p q r s t ¬r ¬s ¬t

p 1 2 2 2

q 1 −1 2 1 1

r 1 1 1

s 1 −1 1 1

t 1 1 1

¬r 1

¬s 1

¬t 1




For visualization purposes, we highlight all 6 Jordan blocks
of J in different colors corresponding to their eigenvectors.

Similar to the eigendecomposition, we can compute
peval(MΠ∨

4
) by computing P · Jk · P−1. For this example,

k = 4 is sufficient to reach the fixpoint. P · J4 · P−1 =

p q r s t ¬r ¬s ¬t
p 2 2 2
q 2 1 1
r 1 1
s 1 1
t 1 1
¬r 1
¬s 1
¬t 1


. This matrix can be translated to:

peval(MΠ∨
4
) = {p← ¬r∨¬s∨¬t, q ← ¬r∨¬s∨¬t, r ←

¬s∨¬t, s← ¬r∨¬t, t← ¬r∨¬s} is the partially evaluated
program of Π∨

4 . peval(MΠ∨
4
) is also identical to the partially

evaluated program of Π4 as there is no And-rule in this case.
General approach using matrix decomposition

We have shown how to use eigendecomposition and JNF to
realize PE. We summarize the section by providing a general
method based on matrix decomposition as follows:

2The algebraic multiplicity of an eigenvalue is the number of times it
appears as a root of the characteristic polynomial.

Algorithm 3: Partial evaluation using matrix decomposition

1: Find the standardized program and its matrix
representation MΠ∧ and MΠ∨ .

2: Resolve cycles in these matrices.
3: For each matrix M̂Π∧ and M̂Π∨ , compute the

eigenvalues and eigenvectors.
4: if the matrix is diagonalizable then
5: find the eigendecomposition of the matrix.
6: else
7: find the Jordan normal form of the matrix.
8: Compute the power using the decomposition.
9: Translate resulting matrices back to a logic program.

VI. EXPERIMENTAL RESULTS

We focus on evaluating the performance of the proposed
linear algebraic PE with iteration method (I) and the matrix
decomposition method (II) using the logic programs in Failure
Modes and Effects Analysis (FMEA) benchmarks [24] that
also has been reported in [10]. Note that we only measure the
time for PE computation (peval for short) not including the
time for solving the abduction problem. The dataset consists of
three problem sets: Artificial samples I (166 instances), Ar-
tificial samples II (118 instances), and FMEA samples (213
instances). All programs in the dataset are acyclic. We also
augment the FMEA benchmarks with cycles to evaluate the
performance in the cyclic case. The augmented benchmarks
are generated by adding randomly 1-5 cycles of the length
2-5 to each GΠ∧ and GΠ∨ of a program P. Algorithms to
be compared are: (I) in dense matrix format, (I) in sparse
(Compressed Sparse Row (CSR)) matrix format, and (II) in
dense matrix format. Our code is implemented in Python 3.7
using numpy, scipy, and sympy for matrices representation
and computation. We set a time out of 20s for PE computation,
if a method takes longer than that, we report it as a timeout
and its execution is set to 60s for comparison.

Table I reports the statistical data of the datasets and a
detailed comparison of the execution time of the proposed
algorithms. It can be seen that (I) is the fastest on all
datasets while (II) is significantly slower. Table II reports the
comparison for the cyclic case. In this case, we also report
the execution time for the cycle-resolving step (resolve for
short). peval + resolve is the total run time for this case.
Augmented cycles do not change much the structure of the
dataset, so the comparison is similar to the acyclic case.

The reason for (II) being slow is that all program matrices
in the benchmarks are not diagonalizable, and Algorithm 3
must call sympy for JNF decomposition. As sympy is meant
for symbolic computation, it can only handle matrices of up to
100 atoms in a reasonable time. For program matrices of this
size, according to Proposition 1, (I) can reach a fixed point in
a few iterations, and then it dominates (II). JNF is also known
to be numerically unstable that is a small perturbation in the
input matrix can lead to a large change in the Jordan form
[25]. In general, (I) is the best choice for linear algebraic PE
in practice because it is simple, fast, and stable.
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TABLE I: Statistical data of the datasets and detailed comparison of execution time (in ms) of the linear algebraic PE methods on the
datasets. (numbers are highlighted in green - best, red - worst)

Artificial samples I (166 instances) Artificial samples II (118 instances) FMEA samples (213 instances)

Parameters mean / std [ min, max ] mean / std [ min, max ] mean / std [ min, max ]
Matrix size 2088.32 / 1584.48 [ 11, 6601 ] 321.86 / 252.64 [ 18, 1110 ] 27.58 / 19.32 [ 6, 84 ]
No. And-rules 1188.63 / 1349.59 [ 8, 6375 ] 201.86 / 186.64 [ 9, 1007 ] 16.10 / 9.23 [ 1, 43 ]
No. Or-rules 899.69 / 839.58 [ 3, 3345 ] 119.99 / 107.40 [ 4, 437 ] 11.48 / 11.01 [ 1, 41 ]
Sparsity (of MΠ) 0.99 / 0.02 [ 0.90, 1.00 ] 0.99 / 0.01 [ 0.90, 1.00 ] 0.95 / 0.04 [ 0.73, 0.99 ]
Longest path 4.63 / 5.36 [ 2, 65 ] 6.56 / 8.56 [ 2, 58 ] 1.94 / 0.24 [ 1, 2 ]
peval steps 3.78 / 0.95 [ 2, 5 ] 3.71 / 0.81 [ 2, 6 ] 2.00 / 0.00 [ 2, 2 ]

Algorithms mean / std Timeout? mean / std Timeout? mean / std Timeout?
(I) Iteration + dense 799 965 / 58 500 0 / 166 4483 / 688 0 / 118 103 / 10 0 / 213
(II) Decomposition + dense 9 292 159 / 34 274 152 / 166 6 041 323 / 28 710 96 / 118 1 607 397 / 19 170 18 / 213
(I) Iteration + sparse 545 / 15 0 / 166 138 / 4 0 / 118 157 / 5 0 / 213

TABLE II: Detailed comparison of execution time (in ms) of the linear algebraic PE methods on the augmented datasets with cycles.

Artificial samples I (166 instances) Artificial samples II (118 instances) FMEA samples (213 instances)

Parameters mean / std [ min, max ] mean / std [ min, max ] mean / std [ min, max ]
No. cycles And-rules 3.72 / 0.25 [ 1, 5 ] 3.68 / 0.30 [ 1, 5 ] 1.00 / 0.00 [ 1, 1 ]
No. cycles Or-rules 3.89 / 0.37 [ 1, 5 ] 3.75 / 0.42 [ 1, 5 ] 1.00 / 0.00 [ 1, 1 ]

Algorithms peval (mean / std) resolve (mean / std) peval (mean / std) resolve (mean / std) peval (mean / std) resolve (mean / std)
(I) Iteration + dense 821 780 / 62 340 573 / 27 4501 / 793 407 / 19 90 / 7 52 / 6
(II) Decomposition + dense 9 251 534 / 33 491 554 / 24 5 970 126 / 27 104 398 / 18 1 271 842 / 18 510 56 / 6
(I) Iteration + sparse 579 / 17 76 / 14 151 / 4 68 / 12 112 / 4 17 / 3

VII. CONCLUSION

We have proposed several techniques to extend the linear
algebraic PE to accommodate Or-rules and cycles in logic pro-
grams. By seeing the PE as computing the power of the matrix
representation of the program, we can leverage eigenvalues
and eigenvectors or program matrices to perform PE in vector
spaces. To the best of our knowledge, this is the first attempt
to incorporate matrix decomposition techniques into linear
algebraic PE for LP. Although the decomposition method does
not perform really well in practice, it opens up a new direction
for future research focusing on leveraging eigenvalues and
eigenvectors of program matrices for reasoning with LP. It is
also important to connect LP to spectral graph theory [26] in
which researchers have also studied the connection between
the eigenvalues of the adjacency matrix of a graph and its
properties. Future work also includes investigating to extend
linear algebraic PE to globally handle both And-rules and Or-
rules in a logic program even with global cycles.
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