
Linear Algebraic Computation of Propositional Horn Abduction

Tuan Nguyen Quoc1,2 and Katsumi Inoue2,1 and Chiaki Sakama3,2
1The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

2National Institute of Informatics, Tokyo, Japan
3Wakayama University, Wakayama, Japan

Email: {tuannq, inoue}@nii.ac.jp, sakama@wakayama-u.ac.jp

Abstract—Linear algebraic characterization of logic programs
has been investigated to perform logical inference in large-scale
knowledge bases and has gained encouraging results. In this
paper, we further extend the linear algebraic characterization in
abductive reasoning by exploiting the transpose of the program
matrix. Then we propose an efficient exhaustive search strategy,
which combines the flexibility and robustness of numerical com-
putation with the compactness and efficiency of set operations, in
order to compute solutions of abductive Horn propositional tasks.
Experimental results demonstrate that our method is competitive
with conflict-driven techniques and has the potential to speed up
on parallel computing platforms.

Index Terms—Horn Abduction, Linear Algebra, Sparse Rep-
resentation

I. INTRODUCTION

Abduction is a form of explanatory reasoning that has been
used for Artificial Intelligence (AI) in diagnosis and percep-
tion [1] as well as belief revision and automated planning.
Logic-based abduction is formulated as the search for a set
of abducible propositions that together with a background
theory entails the observations while preserving consistency
[2]. Recently, abductive reasoning has gained interests in
connecting neural and symbolic reasoning [3] together with
explainable AI [4]. Abductive reasoning has been studied
intensively in diagnosis and automated reasoning, and several
procedures have been proposed in the literature. In the context
of consistency-based diagnosis, the Assumption-based Truth
Maintenance System (ATMS) has been used extensively [5].
Based on the background theory, ATMS constructs a directed
graph in which propositions are represented as nodes, and in
each node, ATMS stores all hypotheses allowing to infer this
node. Further in [6], de Kleer developes an algorithm that
ensures soundness, completeness, minimality, and consistency
of every node label. In [7], Reiter has developed an approach
via conflicts arising from the manifestation. Reiter exploits
the hitting set relation between conflicts and consistency-based
diagnoses to operate on a tree structure. In [8], Greiner et al.
have extended Reiter’s idea by utilizing a directed acyclic
graph instead of a tree, then they have proposed Hitting Set
Directed Acyclic Graph (HS-DAG).

In automated reasoning, Inoue proposed abduction as the
search for logical consequences [9], in which explanations
are derived deductively, via Skipping Ordered Linear (SOL)
resolution. SOLAR (SOL for Advanced Reasoning) is the
state-of-the-art implementation of SOL resolution based on
the tableaux method [10]. Recently, several studies have been

done to recognize the ability to use efficient parallel algorithms
in linear algebra for computing Logic Programming (LP). For
example, high-order tensors have been employed to support
both deductive and inductive inferences for a limited class of
logic programs [11]. In [12], Sato presented the use of first-
order logic in vector spaces for Tarskian semantics, which
demonstrates how tensorization realizes efficient computation
of Datalog. Using a linear algebraic method, Sakama et al. de-
fine relations between LP and tensor then propose algorithms
for computation of LP models [13]. In [14], Nguyen et al. have
analyzed the sparsity level of program matrices and proposed
to employ sparse representation for scalable computation.

In this work, we consider the possibility to employ such
linear algebraic computation for abductive reasoning. Our
intention is to see if linear algebraic methods can contribute
to the scalability of abduction. If we can see the light in this
direction, we can utilize parallel computing based on GPU
as well as neural-symbolic computation for robust abductive
reasoning. In this regard, Aspis et al. have proposed a linear
algebraic transformation for abduction by exploiting Sakama
et al.’s algebraic transformation [15]. They have defined an
explanatory operator based on third-order tensor for computing
abduction in Horn propositional programs that simulates de-
duction through Clark completion for abductive programs [16].
The dimension explosion would arise, unfortunately, Aspis
et al. have not yet reported an empirical work. In this paper,
we explore different approaches for linear algebraic abduction.

Contribution & outline: This paper aims at exploring the
potentials of linear algebraic computation for the Propositional
Horn Clause Abduction Problem (PHCAP) in vector spaces.
To this end, we firstly propose the use of the transpose of a
program matrix that has been defined for deduction in [13; 14]
to represent an abductive matrix for 1-step abduction in vector
spaces. Secondly, we solve the Minimal Hitting Set (MHS)
problem to deal with a number of alternative explanations in
an efficient way. Thirdly, we employ the sparse representation
of abductive matrices for efficient computation. Then, we
formally prove the correctness of our method and compare
it with other state-of-the-art abductive procedures in large
abductive datasets of diagnosis. The rest of this paper is orga-
nized as follows: Section II reviews basic notions ; Section III
illustrates the linear algebraic computation of abduction; Sec-
tion IV demonstrates experimental results in Failure Modes
and Effects Analysis (FMEA)-base benchmarks; Section V
gives final remarks and discusses potential future works.



II. PRELIMINARIES

We consider a language P that contains a finite set of
propositional variables.

A Horn logic program is a finite set of rules of the form:

h← b1 ∧ · · · ∧ bm (m ≥ 0) (1)

where h and bi are propositional variables in P. In (1) the
left-hand side of ← is called the head and the right-hand
side is called the body. A Horn logic program P is called
singly defined (SD program, for short) if h1 6= h2 for any
two different rules h1 ← B1 and h2 ← B2 in P where B1

and B2 are conjunctions of atoms. That is, no two rules have
the same head in an SD program. When P contains more
than one rule (h ← B1), . . . , (h ← Bn) (n > 1), replace
them with a set of new rules:

h← b1 ∨ · · · ∨ bn (2)
b1 ← B1 · · · bn ← Bn

where b1, . . . , bn are new atoms such that bi 6∈ BP (1 ≤ i ≤
n) and bi 6= bj if i 6= j. Every Horn logic program P is
transformed to Π = Q∪D such that Q is an SD program and
D is a set of rules of the form (2). The resulting Π is called
a standardized program. Note that the rule (2) is a shorthand
of n rules: h← b1, . . ., h← bn, so a standardized program is
considered a Horn logic program. Throughout the paper, a pro-
gram means a standardized program unless stated otherwise.
For each rule r of the form (1) or (2), define head(r) = h and
body(r) = {b1, . . . , bm} (or body(r) = {b1, . . . , bn}). A rule
is called a fact if body(r) = ∅. A rule is called a constraint if
head(r) = ∅. A constraint ← b1 ∧ · · · ∧ bm is replaced with

⊥ ← b1 ∧ · · · ∧ bm

where ⊥ is a symbol representing False. When there are
multiple constraints, say (⊥ ← B1), . . . , (⊥ ← Bn), they
are transformed to

⊥ ← ⊥1 ∨ · · · ∨ ⊥n and ⊥i ← Bi (i = 1, . . . , n)

where ⊥i 6∈ BP is a new symbol. Given a program P , the set
of all propositional variables appearing in P is the Herbrand
base of P (written BP ). An interpretation I (⊆ BP ) is a model
of a program P if {b1, . . . , bm} ⊆ I implies h ∈ I for every
rule (1) in P , and {b1, . . . , bn} ∩ I 6= ∅ implies h ∈ I for
every rule (2) in P . A model I is the least model of P (written
LMP ) if I ⊆ J for any model J of P . We write P |= a when
a ∈ LMp. For a set S = {a1, . . . , an} of atoms, we write
P |= S if P |= a1 ∧ · · · ∧ an. A program P is consistent if
P 6|= ⊥.

Definition 1. Horn clause abduction: A PHCAP consists
of a tuple 〈P,H,O,T〉, where H ⊆ P (called hypotheses or
abducibles), O ⊆ P (called observations), and T is a consistent
Horn logic program.

In this paper, we assume a program T is acyclic1 [17] and in
its standardized form. Without loss of generality, we assume
that any abducible atom h ∈ H does not appear in any head of
rule in T. If there exists h ∈ H and a rule r : h← body(r) ∈
T, we can replace r with r′ : h← body(r)∨h′ in T and then
replace h by h′ in H. If r is in the form (2), then r′ is an
Or-rule and no need to further update r′. On the other hand,
if r is in the form (1), then we can update r′ to become an
Or-rule by introducing an And-rule br ← body(r) in T and
then replace body(r) by br in r′.

Definition 2. Explanation of PHCAP: A set E ⊆ H is a
solution of a PHCAP 〈P,H,O,T〉 if T ∪ E � O and T ∪
E is consistent. E is also called an explanation of O. An
explanation E of O is minimal if there is no explanation E′

of O such that E′ ⊂ E.

Deciding if there is a solution of a PHCAP is NP-complete
[18; 2]. In this paper, we want to find the set E of minimal
explanations E for a PHCAP 〈P,H,O,T〉.

In PHCAP, T is partitioned into TAnd∪TOr where TAnd is a
set of And-rules of the form (1) and TOr is a set of Or-rules of
the form (2). Given T, define head(T) = {head(r) | r ∈ T},
head(TAnd) = {head(r) | r ∈ TAnd}, and head(TOr) =
{head(r) | r ∈ TOr}.

III. LINEAR ALGEBRAIC COMPUTATION OF ABDUCTION

A. Linear algebraic encoding

We slightly modify the definition by Sakama et al. to define
a matrix program of T in a vector space.

Definition 3. Matrix representation of standardized pro-
grams [13]: Let T be a standardized program with P = {p1,
. . ., pn}. Then T is represented by a program matrix MP ∈
Rn×n (n = |P|) such that for each element aij (1 ≤ i, j ≤ n)
in MP :

1) aijk = 1
m (1 ≤ k ≤ m; 1 ≤ i, jk ≤ n) if pi ←

pj1 ∧ · · · ∧ pjm is in TAnd and m > 0;
2) aijk = 1 (1 ≤ k ≤ l; 1 ≤ i, jk ≤ n) if pi ← pj1 ∨
· · · ∨ pjl is in TOr;

3) aii = 1 if pi ← is in TAnd or pi ∈ H.;
4) aij = 0, otherwise.

In Definition 3, we have an update in the condition 3 that
we set 1 for all abducible atoms pi ∈ H. We further extend
Definition 3 to define the abductive matrix of a theory T.

Definition 4. Abductive matrix of PHCAP: Suppose that a
PHCAP has T with its program matrix MP . The abductive
matrix of T is the transpose of MP represented as MP

T .

Example 1. Consider a PHCAP such that:
P = {p, q, r, s, h1, h2, h3}, O = {p}, H = {h1, h2, h3},

1A program T is acyclic if the dependency graph of T is acyclic. The
dependency graph of a logic program T is a graph (V,E), where the nodes
V are the atoms of T and, for each rule from T, there are edges in E from
the atoms appearing in the body to the atom in the head.



T = {p← q ∧ r, q ← h1 ∨ s, r ← s ∨ h2, s← h3}.
The program matrix and the abductive matrix of T are 2:

MP =



p q r s h1 h2 h3

p 1/2 1/2
q 1 1
r 1 1
s 1
h1 1
h2 1
h3 1


, MP

T =



p q r s h1 h2 h3

p
q 1/2
r 1/2
s 1 1
h1 1 1
h2 1 1
h3 1 1


Definition 5. Correspondent vector of PHCAP: Any subset
s ⊆ P can be represented by a corresponding vector v of the
length |P| such that the i-th value v[i] = 1 (1 ≤ i ≤ |P|) iff
the i-th atom pi of P is in s; otherwise v[i] = 0.

Without ambiguity, we will identify the set representation
s with the vector representation v, so we denote them all as
v from now on. Henceforth, vi is the i-th atom of P that
constitutes s, while v[i] is the value of the vector at index i.

In some specific cases, we also use v as a special function
that outputs a corresponding vector of a subset in vector
spaces: v(O) the observation vector, v(H) the hypotheses
vector, v(⊥) the integrity vector (shorthand of v({⊥}) where
{⊥} ⊂ P), v(head(TAnd)) the vector of all head atoms of
And-rules in TAnd, v(head(TOr)) the vector of all head atoms
of Or-rules in TOr. We use this notation for better indexing
each element and a vector value in the set/vector. If there is no
need to indicate each individual item, we can omit the function
notation v().

In order to utilize the use of correspondent vectors, we
define a thresholding method to perform needed set operations
in vector spaces.

Definition 6. θ-thresholding:
1) Given a value x ∈ R, define θ(x) = x′ such that x′ = 1

if x > 0; otherwise, x′ = 0
2) Given a vector v ∈ Rn, define θ(v) = v′ such that

v′[i] = 1 if v[i] > 0; otherwise v′[i] = 0
3) Given a matrix M ∈ Rn×m, define θ(M) = M ′ such

that M ′[i][j] = 1 if M [i][j] > 0; otherwise M ′[i][j] = 0

where 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proposition 1. The following equivalence relations hold :

u ∩ v = ∅ ⇔ u · v = 0

u ∩ v 6= ∅ ⇔ u · v > 0

u ⊆ v ⇔ θ(u+ v) ≤ θ(v)

where · is the inner product.

B. Linear algebraic computation

The goal of PHCAP is to find the set of minimal expla-
nations E according to Definition 2. Using Definition 5, we
can represent any E ∈ E by a column vector E ∈ R|P|×1. To
compute E, we define an interpretation vector v ∈ R|P|×1. We
use the interpretation vector v to demonstrate linear algebraic
computation of abduction to reach an explanation E starting
from an initial vector v = v(O) which is the observation vector
(note that we can use the notation O as a vector without the

2We omit all zero elements in matrices for better readability.

function notation v() as stated before). At each computation
step, we can interpret the meaning of the interpretation vector
v as: in order to explain O, we have to explain all atoms vi
such that v[i] > 0.

Definition 7. Explanation vector: The interpretation vector
v reaches an explanation E if v ⊆ H. This condition can be
written in linear algebra as follows:

θ(v + H) ≤ θ(H) (3)

where H is the short hand of v(H) which is the hypotheses
set/vector mentioned above.

Proposition 2. An interpretation vector v is consistent with
T if lfp(MP , v) ∩ {⊥} 6= ∅. This condition can be written in
linear algebra as follows:

v(⊥) · lfp(MP , v) = 0 (4)

where MP is the program matrix of T and lfp(MP , v) is the
vector representation of the least fixpoint of the TP -operator
[19] starting from v.

Proof. The lfp can be computed in the vector space by
applying matrix multiplication MP · v continuously until the
fixpoint is reached. The resulting vector corresponds to the
least model of T ∪ v [13]. If this model contains ⊥, T ∪ v is
inconsistent; otherwise v is consistent with T. We can perform
this test using Definition 1.

An efficient method to compute lfp of a definite program
has been developed in [14].

We now define 1-step abduction in PHCAP step by step.
We use the superscript (t) to denote the interpretation vector
v at a step t.

Definition 8. 1-step abduction for TAnd of a vector: We can
obtain a reduct abductive matrix MP (TAnd)

T from MP
T by

removing all columns w.r.t. Or-rules in TOr. Then we define
the 1-step abduction for TAnd as:

v(t+1) = MP (TAnd)
T · v(t) (5)

The 1-step abduction (5) is a reverse version of the TP -
operator on a single vector. By transposing the program matrix
to an abductive matrix, we represent the abductive step in a
vector space that computes the explanation v(t+1) for v(t). This
step corresponds to a deductive step through Clark completion
in an SD program [16]. Suppose that there is an index i such
that vi ∈ v(t) ∩ head(TAnd), according to Definition 3 and
Definition 4 there is a column w.r.t. vi in MP (TAnd)

T , denoted

by col(vi). By applying (5), v(t+1)[j] =
v(t)[i]

|col(vi)|
> 0, for any

j such that v(t+1)
j ∈ col(vi). Then vector v(t+1) represents the

set of atoms required to explain v(t).

Example 2 (cont. Example 1). TAnd = {p ← q ∧ r, s ←
h3}. We can obtain a reduct abductive matrix MP (TAnd)

T by
removing columns w.r.t. rules {q ← h1∨s, r ← s∨h2} in the



original abductive matrix. Consider applying 1-step abduction
for TAnd with v(t) = O:

v(t) = (1, 0, 0, 0, 0, 0, 0)T (= O)

v(t+1) = MP (TAnd)
T · v(t)

=



p q r s h1 h2 h3

p

q 1/2

r 1/2

s

h1 1

h2 1

h3 1 1


·



p 1

q 0

r 0

s 0

h1 0

h2 0

h3 0


=



p 0

q 1/2

r 1/2

s 0

h1 0

h2 0

h3 0


The vector v(t+1) can be interpreted as: in order to explain

p, both q and r are to be explained.
Definition 8 illustrates that we can apply continuously the

1-step abduction (5) with v(0) = O until it reaches an
explanation by the condition in Definition 7 and satisfies
consistency in Prop. 2. In fact, Definition 7 may not hold in
case where there is an atom in the interpretation vector that
we have no rule in TAnd to apply to find its explanation.

Proposition 3. The summation of v(t) is bounded.

sum(v(t+1)) ≤ sum(v(t)) ≤ · · · ≤ sum(v(0)) (6)

where sum(v) = Σvi∈vv[i].

This proposition is trivial to prove using Definition 3 and
Definition 4. For simplicity, we can initialize the starting
point v(0) that statisfies sum(v(0)) = 1. If there are multiple
observations o1, o2, . . . , ok ∈ O, a new atom o is introduced
to replace the current observation set. Then a new conjunctive
rule o ← o1 ∧ o2 ∧ · · · ∧ ok is introduced to the theory T.
Then we can initialize the starting point O = {o} such that
summation of the corresponding vector is 1. From now on, we
assume sum(v(0)) = 1 without loss of generality.

Proposition 4. If sum(v(t)) < 1, then v(t) ∪ TAnd 2 O .

Proof. According to Prop. 3, for any interpretation v(t), we
have sum(v(t)) ≤ sum(v(t−1)) ≤ · · · ≤ sum(v(0)) = 1.
Assume the equality holds until the step t − 1 of the 1-step
abduction (5). If there is any index i such that vi ∈ v(t−1) \
head(TAnd), the column w.r.t. vi in the reduct abductive
matrix is encoded as a zero column. Thus, when applying
matrix multiplication in Definition 8, at the index i, v(t)[i] = 0
while v(t−1)[i] > 0. That is: sum(v(t−1)) − sum(v(t)) ≥
v(t−1)[i] > 0 ⇔ sum(v(t)) < 1. This behavior is equivalent
to considering an explanation of vi but there is no rule in TAnd

that can explain vi.

According to Definition 5, an interpretation v can be repre-
sented by a column vector v ∈ R|P|×1. We can stack multiple
vectors v to form an interpretation matrix M ∈ R|P|×|M |
while all definitions and propositions with the 1-step abduction
for TAnd of a vector still work. Therefore, we can rewrite
Definition 8 as follows:

Definition 9. 1-step abduction for TAnd:

M (t+1) = MP (TAnd)
T ·M (t) (7)

We now introduce a notation M as a matrix that is equiva-
lent to a vector of vectors or a set of sets. Note that we denote
|M | as the number of vectors or sets in M . We also use the
same notation we mentioned above that Mi is the i-th set of
M , while M [i] is the vector at an index i.

Let v be an interpretation vector in 〈P,H,O,T〉 such
that v ∩ head(TOr) = {head(r1), head(r2), . . . , head(rk)}
with r1, r2, . . . , rk ∈ TOr. In order to compute explana-
tions of v we have to explore all combinations c extracted
from {body(r1), body(r2), . . . , body(rk)} such that ∀j ∈
{1, 2, . . . , k}, c ∩ body(rj) 6= ∅. It turns out that this is
equivalent to enumerate the Minimal Hitting Sets (MHS) with
the input set is {body(r1), body(r2), . . . , body(rk)} [20].

We denote MHS(S) as all MHS of a family of sets to be
hit S. Now we can define 1-step abduction for TOr.

Definition 10. 1-step abduction for TOr:

M (t+1) =
⋃

∀v∈M(t)

⋃
∀s∈MHS(S(v, TOr))

((
v \head(TOr)

)
∪ s

)
(8)

where: S(v, TOr) = {body(r1), body(r2), . . . , body(rk)} is
a family of sets to be hit such that v ∩ head(TOr) =
{head(r1), head(r2), . . . , head(rk)}.

Note that all new vectors v ∈ M (t+1) will be reallocated
values such that sum(v) = 1 to maintain the condition in
Prop. 4 of the 1-step abduction (7) for TAnd.

Example 3 (cont. Example 2). Tor = {q ← h1 ∨ s, r ←
s ∨ h2}. We use the output of Example 2 as the input of the
1-step abduction for TOr, but now we treat it as a matrix
instead:

M (t)T =
( p q r s h1 h2 h3

0 0 1/2 1/2 0 0 0 0

)
M (t) = {{q, r}}

S
(M

(t)
0 , TOr)

= {{h1, s}, {s, h2}}

MHS(S
(M

(t)
0 , TOr)

) = {{s}, {h1, h2}}

M (t+1) = {{s}, {h1, h2}}

M (t+1)T =
( p q r s h1 h2 h3

0 0 0 0 1 0 0 0

1 0 0 0 0 1/2 1/2 0

)

To the best of our knowledge, it is not trivial to implement
an efficient method in a vector space that enumerates exactly
all MHS as we defined in Definition 10. Hence, to implement
(8) at this time, we have no choice but to treat all interpreta-
tions as sets instead of vectors. Fortunately, we can perform
the vector-set conversion with minimal cost using the sparse
representation we are going to discuss later.

Up to now, we have defined 1-step abduction for TAnd and
TOr. Although each method itself is not sufficient to solve the
PHCAP 〈P,H,O,T〉, their characteristics are important for us
to define a general approach.



Definition 11. Or-computable and And-computable:
1) A vector v is Or-computable iff v ∩ head(TOr) 6= ∅.
2) A matrix M is Or-computable iff ∃v ∈ M , v is Or-

computable.
3) A vector v is And-computable iff v is not Or-

computable.
4) A matrix M is And-computable iff ∀v ∈ M , v is not

Or-computable.

Proposition 5. For any matrix M which is Or-computable
in 〈P,H,O,T〉, there exists a fixpoint t of (8), such that
M (t+k) = M (t), ∀k > 0, k ∈ N.

Proof. For each Or-computable vector v ∈ M , the 1-step
abduction (8) replaces all atoms in the intersection of v and
head(TOr) by the corresponding MHS. In addition, T is finite
and acyclic so there is a fixpoint such that there is no Or-
rule that can be used to abduce v or we can say that v is
And-computable. That means v ∩ head(TOr) = ∅, so the
corresponding MHS is an empty set then ∀k > 0, v(t+k) =
v(t) (k ∈ N). Extend this to other interpretations in M we
have that M is And-computable and ∀k > 0, M (t+k) = M (t)

(k ∈ N).

Corollary 1. For any matrix M which is Or-computable in
〈P,H,O,T〉, if t is the fixpoint of (8) then M (t) is And-
computable in 〈P,H,O,T〉.

Proposition 6. For any matrix M which is And-computable
in 〈P,H,O,T〉, MP (TAnd)

T ·M = MP
T ·M .

Proof. As in Definition 8, MP (TAnd)
T is a reduct abductive

matrix from MP
T by removing all columns w.r.t. Or-rules in

TOr. So MP (TAnd)
T ·M has no effect on Or-computable vec-

tor v ∈ M . Moreover, M is And-computable in 〈P,H,O,T〉
by definition, therefore MP (TAnd)

T ·M = MP
T ·M .

Based on the two 1-step abduction (7) and (8), we propose
an exhaustive search strategy to solve the PHCAP 〈P,H,O,T〉
in a vector space as illustrated in Algorithm 1.

Some explanations are in order:
• Step 7: sumcol(M

′) means applying summation on each
vector v ∈M ′ to return a vector. Then we compare each
element of this vector with 1 − ε following the Prop. 4
to return a corresponding Boolean vector. Due to the
numerical issue with floating-point numbers in computer
e.g. 1

3+ 1
3+ 1

3 = 0.999 . . . , a small fraction ε is introduced
to relax the condition in Prop. 4. Choosing the best ε
depends on actual 〈P,H,O,T〉. If we set ε too small, we
may filt out good interpretations and the algorithm might
not gives expected output. While setting ε too large, we
may waste of computation in unexplainable paths.

• Step 8: We use the Boolean vector in Step 7 to elimi-
nate unexplainable interpretations. We keep only vectors
that their Boolean value is False. [] is the projection
method that extracts from M ′ only vectors that satisfy the
condition inside []. Similarly, we also use the projection
method in Steps 15-18.

Algorithm 1 Explanations finding in a vector space
Input: PHCAP consists of a tuple 〈P,H,O,T〉
Output: Set of explanations E

1: Create an abductive matrix MP
T from T

2: Initialize the observation matrix M from O
3: E = ∅
4: while True do
5: M ′ = MP

T ·M
6: M ′ = consistent(M ′) . Prop. 2
7: v sum = sumcol(M

′) < 1− ε . Prop. 4
8: M ′ = M ′[v sum = False]
9: if M ′ = M or M ′ = ∅ then

10: v ans = θ(M + H) ≤ θ(H) . Definition 7
11: E = E ∪M [v ans = True]
12: return minimal(E) . Minimality check
13: do
14: v ans = θ(M ′ + H) ≤ θ(H) . Definition 7
15: E = E ∪M ′[v ans = True]
16: M ′ = M ′[v ans = False]
17: M = M ∪M ′[not Or-computable]
18: M ′ = M ′[Or-computable]

19: M ′ =
⋃
∀v∈M ′

⋃
∀s∈MHS(S(v, TOr))

((
v \ head(TOr)

)
∪ s
)

20: M ′ = consistent(M ′) . Prop. 2
21: while M ′ 6= ∅

• Step 12: Applying the minimality check on the set E
to eliminate redundant explanations according to Defini-
tion 1. We implement this method by sorting all E ∈ E
by their cardinality, then applying a simple set iteration
loop.

• Steps 16,18-19: Construct a matrix M ′ which is Or-
computable then perform the 1-step abduction (8). Here
we have to solve the MHS problem many times. We
implement a naive approach in which we enumerate all
combinations then apply the minimality check similar to
Step 12. However, this implementation can deal with up
to 500,000 combinations, therefore, we exploit PySAT3

to solve large-size MHS problems [21].

Theorem 1. The output of Algorithm 1 is the set of all
minimal explanations of the PHCAP 〈P,H,O,T〉 .

Proof. Definition 5 defines 1-1 correspondence between sub-
sets of P and vectors. Algorithm 1 employs both the 1-step
abduction (7) and (8) in a vector space, which are equivalent
to abductive steps in TAnd and TOr respectively, exploring
all possibilities that satisfy both Definition 7 and Prop. 2.
Therefore, ∀E ∈ E, E ⊆ H we have E∪T � O and E∪T 2 ⊥.
Futher, Algorithm 1 employs minimality check on E, therefore
∀E1, E2 ∈ E, E1 * E2.

Example 4. Let us demonstrate how to solve the PHCAP
in Example 1 using Algorithm 1. Actually, we have done
the first iteration of Algorithm 1 as illustrated in Example 2

3https://github.com/pysathq/pysat



and Example 3. We continue the next iteration with the
interpretation matrix M = M (t+1) obtained in Example 3.

MT =
( p q r s h1 h2 h3

0 0 0 0 1 0 0 0

1 0 0 0 0 1/2 1/2 0

)

M ′
T

= (MP
T ·M)

T
=

( p q r s h1 h2 h3

0 0 0 0 0 0 0 1

1 0 0 0 0 1/2 1/2 0

)

Here Algorithm 1 stops because all interpretations reach ex-
planations of Definition 7, satisfying the condition of Prop. 2,
and M ′ = ∅ after that. Finally, the algorithm applies minimal
checking and gives the output set of minimal explanations
E = {{h3}, {h1, h2}}.

C. Matrix representation

In our previous work, we have analyzed the sparsity of
logic programs in vector spaces and have a conclusion that
program matrices are sparse in general [14]. The paper in-
dicates that implementing the TP -operator using a sparse
format outperforms that using the dense format in large-scale
logic programs. Similarly, the sparse representation will be
promising in abductive reasoning.

The sparsity of a matrix equals the number of zero-valued
elements divided by the total number of elements [22]. By
definition, there is no doubt that in a PHCAP 〈P,H,O,T〉, the
sparsity of the abductive matrix and that of the program matrix
are equal and can be computed by the following equation [14]:

sparsity(T) = 1−

∑
r∈T
|body(r)|

|P|2
(9)

Extend the definition of sparsity to an interpretation matrix
M , we have the following equation:

sparsity(M) = 1−

∑
v∈M
|v|

|P| × |M |
(10)

Because M is growing while we explore different possible
explanations, there is no warranty that M always has a high
level of sparsity. In case M is not sparse (sparsity(M) ≤
0.9), although the sparse representation may not help much in
terms of performance, it provides faster vector-set conversion.
In Section IV, we will analyze more detail about the sparsity
level of interpretation matrices.

Regarding memory usage among general-purpose sparse
representations, the Compressed Sparse Row (CSR) and the
Compressed Sparse Column (CSC) formats are similar in
case the matrix is square and they are usually better than
the Coordinate (COO) format. The CSR format enables faster
lookup by row while the CSC format provides faster lookup
by column. In our previous work, we suggest using the CSR
for the program matrix then when transpose it to obtain an
abductive matrix, it will become a CSC matrix naturally.
Therefore, we suggest using the CSC format for both the
abductive matrix and the interpretation matrix.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

To demonstrate the linear algebraic computation of abduc-
tion, we conduct experiments on the benchmark datasets used
in [23; 24]4. The purpose of this paper is to compare the
effectiveness of our method with that of other general-purpose
solvers. Thus, we implement our method as two versions
including a dense matrix method (Dense matrix for short)
and a sparse matrix method (Sparse matrix for short). For
both the abductive matrix and the interpretation matrix, we
use dense format in Dense matrix while in Sparse matrix,
CSC format is used. Our code is implemented in Python
3.7 using Numpy and Scipy for matrices representation and
computation. As stated in Algorithm 1, we implement a naive
approach for solving MHS that we only use built-in Python
set operations. For large-size MHS problems, which have more
than 50,000 combinations, we use MHS enumerator provided
by PySAT. Importantly, we force to execute our code in a
single core, in order to make a fair comparison with other
methods. The computer we perform this experiment has the
following configurations: CPU: Intel(R) Xeon(R) Bronze 3106
CPU @1.70GHz; RAM: 64GB DDR3 @1333MHz; Operating
system: Ubuntu 18.04 LTS 64bit.

As stated in Section II, we need an extra step to transform
the program into equivalent standardized format. Accordingly,
we denote the input PHCAP as 〈P′,H,O,T′〉 while the
standardized PHCAP is 〈P,H,O,T〉. The detailed statistical
information of all problem sets are represented in the first 4
rows |H|, |P′ \H|, |T′|, and |O| of Table I. The next 4 rows of
Table I represent the transformed T and P, while |P| is also
the dimension of a corresponding abductive matrix.

Table I also records the sparsity analysis data on all
benchmark datasets. ηz(MP

T ) and ηz(M) are the number
of non-zero elements in the abductive matrix and the inter-
pretation matrix respectively. Similarly, sparsity(MP

T ) and
sparsity(M) are the sparsity of the abductive matrix and
the interpretation matrix, respectively. Because interpretation
matrices are not fixed, we record only the maximum number of
interpretations (max(|M |)), the maximum ηz (max(ηz(M))),
and the minimum sparsity min(sparsity(M)) for each inter-
pretation matrix. Finally, max iter is the number of iterations
of the main loop in the Algorithm 1 and |E| is the number of
correct minimal explanations.

B. Results

1) Artificial benchmarks: Figure 1 and Figure 2 illustrate
the comparison on the Artificial samples I and II, while Ta-
ble II and Table III give more detail information. As witnessed
in Figure 1 and Figure 2, runtime trends of all algorithms grow
exponentially by the number of solved samples (#solved).

In the Artificial samples I, together with ATMS and HS-
DAGQX , our linear algebraic approaches are able to solve all
problems. Surprisingly, in terms of total runtime, Dense matrix
is even faster than HS-DAGQX while Sparse matrix is just

4Consult the paper for more detail about other algorithms.



Benchmark dataset Artificial samples I (166 problems) Artificial samples II (118 problems) FMEA samples (213 problems)

Parameters mean std min max mean std min max mean std min max

|H| 275.07 167.12 10.00 504.00 120.42 74.35 12.00 235.00 26.16 20.81 3.00 90.00

|P′ \ H| 1903.23 1504.90 6.00 6466.00 252.74 220.50 13.00 1055.00 27.58 19.32 6.00 84.00

|T′| 2951.10 2131.57 11.00 7187.00 417.70 320.56 21.00 1147.00 71.59 75.88 13.00 299.00

|O| 2.86 1.38 1.00 5.00 2.72 1.71 1.00 13.00 10.79 6.94 1.00 29.00

|T| 2088.32 1584.48 11.00 6601.00 321.86 252.64 18.00 1110.00 27.58 19.32 6.00 84.00

|TAnd| 1188.63 1349.59 8.00 6375.00 201.86 186.64 9.00 1007.00 16.10 9.23 1.00 43.00

|TOr| 899.69 839.58 3.00 3345.00 119.99 107.40 4.00 437.00 11.48 11.01 1.00 41.00

|P| 2372.36 1730.91 24.00 7148.00 450.89 318.33 38.00 1397.00 53.74 39.59 9.00 174.00

ηz(MP
T ) 6354.90 4902.87 50.00 22,307.00 1180.36 861.83 83.00 4117.00 107.54 98.57 18.00 413.00

sparsity(MP
T ) 0.99 0.02 0.90 1.00 0.99 0.01 0.90 1.00 0.95 0.04 0.73 0.99

max(|M |) 250.34 1729.52 1.00 16,866.00 16,494.04 149,787.13 1.00 1,618,050.00 2126.49 15,512.54 1.00 154,440.00

max(ηz(M)) 5138.28 37,776.87 1.00 428,754.00 390,900.36 3,240,888.43 1.00 34,882,765.00 43,738.87 334,393.40 1.00 3,459,456.00

min(sparsity(M)) 0.98 0.05 0.68 1.00 0.94 0.08 0.59 1.00 0.79 0.13 0.46 0.99

max iter 4.63 5.36 2.00 65.00 6.56 8.56 2.00 58.00 1.94 0.24 1.00 2.00

|E| 2.77 5.06 1.00 50.00 499.60 5386.87 1.00 58,520.00 68.89 272.54 1.00 2288.00

TABLE I: Statistics and sparsity analysis on benchmark datasets

Fig. 1: Experimental results for the Artificial samples I.

Algorithms #solved #fastest mean(t) (ms) std(t) (ms) mean(t+ tp)
(ms)

std(t+ tp)
(ms)

Dense matrix 1660.00 110.00 27,902.34 334.72 27,902.34 1743.57

Sparse matrix 1660.00 930.00 5899.76 45.19 5899.76 95.03

ATMS 1660.00 68.00 5170.98 153.63 5170.98 1088.59

ASP 1650.00 0.00 5,323,586.50 103,733.75 7,723,586.50 317,719.00

HS-DAG 1630.00 344.00 110,639.62 30,280.36 7,310,639.62 33,034.62

HS-DAG QX 1660.00 208.00 50,229.78 9765.79 50,229.78 12,389.13

CF 1650.00 0.00 1,673,516.00 59,781.49 4,073,516.00 91,042.34

TABLE II: Detail runtime results on the Artificial samples I.

a few seconds behind the fastest - ATMS. Other methods
fall behind by a large margin because they are penalized on
unresolved samples. Table II further reveals the efficiency of
linear algebraic methods that Dense matrix is the fastest in
110 runs while Sparse matrix is the fastest in 930 runs. In this
dataset, the sparsity of abductive matrices and interpretation
matrices maintains at a good level of mean (Table I).

In the Artificial samples II, only ATMS is able to handle
all problems although it is not the fastest algorithm. ASP ,
HS-DAGQX and linear algebraic methods are equal in terms
of #solved that is 117/118. Table III gives a more detailed
comparison in the Artificial samples II that Dense matrix and
Sparse matrix are competitive as being the fastest algorithm in
248 and 120 runs, respectively. From Table I we also can see
that |E| and max(|M |) surge to very large figures, 58, 520 and
1, 618, 050, respectively. This happens in the only one problem
instance that our methods are failed to solve in time.

Fig. 2: Experimental results for the Artificial samples II.

Algorithms #solved #fastest mean(t) (ms) std(t) (ms) mean(t+ tp)
(ms)

std(t+ tp)
(ms)

Dense matrix 1170.00 248.00 207,014.78 3572.90 2,607,014.78 6905.92

Sparse matrix 1170.00 120.00 63,251.15 234.91 2,463,251.15 595.52

ATMS 1180.00 119.00 598,145.22 63,316.83 598,145.22 67,145.68

ASP 1170.00 0.00 568,407.50 2868.16 2,968,407.50 12,195.99

HS-DAG 1130.00 436.00 67,567.05 16,942.54 12,067,567.05 18,572.30

HS-DAG QX 1170.00 257.00 18,198.16 4106.36 2,418,198.16 6744.99

CF 1140.00 0.00 508,309.00 7849.55 10,108,309.00 13,188.27

TABLE III: Detail runtime results on the Artificial samples II.

Notably in both the benchmarks, Dense matrix takes the lead
over Sparse matrix in the beginning. This is understandable be-
cause the sparsity level of interpretation matrices, for example
in the data for Artificial samples II in Table I, drops to min
0.59 and mean 0.94. In this situation, sparse representation
cannot take much benefit. Due to that fact, Sparse matrix still
takes over Dense matrix in the end with much better total
execution time as can be seen in Figure 1. Further, Sparse
matrix is the most stable algorithm with the best std.

2) Real-world samples: Figure 3 illustrates the comparison
on FMEA samples benchmark while Table IV gives more
detail information about each algorithm. In this benchmark,
ATMS, CF and linear algebraic methods are able to solve
all instances without penalty. Surprisingly, Dense matrix out-
performs others and takes the lead by a remarkable margin
(Figure 3) and ends up even more than 2 times faster than
the 3rd place algorithm - ATMS in terms of total execution



Fig. 3: Experimental results for the FMEA diagnosis problems.

Algorithms #solved #fastest mean(t) (ms) std(t) (ms) mean(t+ tp)
(ms)

std(t+ tp)
(ms)

Dense matrix 2130.00 1166.00 92,984.70 1548.40 92,984.70 3558.29

Sparse matrix 2130.00 160.00 77,685.41 886.43 77,685.41 1424.03

ATMS 2130.00 579.00 250,000.13 16,202.02 250,000.13 23,799.18

ASP 2020.00 0.00 45,051.30 762.81 26,445,051.30 2798.81

HS-DAG 1775.00 31.00 3,883,275.76 650,599.24 89,083,275.76 950,627.02

HS-DAG QX 2020.00 184.00 27,926.05 350.21 26,427,926.05 1491.80

CF 2130.00 10.00 498,885.00 16,324.68 498,885.00 25,601.16

TABLE IV: Detail runtime results on the FMEA diagnosis
problems..

time (Figure 3). Sparse matrix starts with a humble beginning
but performs very well after that and finishes at the first place
with the lowest execution time in total.

From Table I, we can see that sparsity(MP
T ) and

sparsity(M) drop to mean 0.95, min 0.73 and mean 0.79,
min 0.46, respectively. That is the reason for the good per-
formance of Dense matrix in many runs. Despite of that fact,
Sparse matrix is still better in overall because of faster lookup
by column as explained in Section III. Moreover, Sparse
matrix still is the best stable algorithm with the lowest std
among those with highest #solved.

V. CONCLUSION

We have proposed a linear algebraic approach for solving
PHCAP using the abductive matrix in either dense or sparse
formats. Experimental results demonstrate that Algorithm 1 is
competitive with other existing methods. The merit of solving
PHCAP in vector space is not only the scalability but also the
capability of integrating with other AI techniques e.g. Artificial
Neural Network (ANN).

In addition, taking the MHS problem into account in vector
space is a potential research topic. If we can handle the MHS
problem efficiently in the vector space, we can unlock the
capability of GPU computing in solving large-size PHCAPs.
Future work includes developing an efficient method for
abduction with normal logic programs in vector spaces.

ACKNOWLEDGEMENT

This work has been supported in part by the JSPS KAK-
ENHI grants JP17H00763 and 18H03288. Tuan Nguyen Quoc
has also been supported by Japan International Cooperative
Agency “Innovative Asia”.

REFERENCES

[1] Josephson, J. R. and Josephson, S. G. Abductive inference: Computa-
tion, philosophy, technology. Cambridge University Press, 1996.

[2] Eiter, T. and Gottlob, G. The complexity of logic-based abduction.
Journal of the ACM (JACM), 42(1):3–42, 1995.

[3] Dai, W.-Z., Xu, Q., Yu, Y., and Zhou, Z.-H. Bridging machine
learning and logical reasoning by abductive learning. In Neural
Information Processing Systems 2019, volume 32. Curran Associates,
Inc., 2019.

[4] Ignatiev, A., Narodytska, N., and Marques-Silva, J. Abduction-based
explanations for machine learning models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 1511–
1519, 2019.

[5] de Kleer, J. An assumption-based TMS. Artif. Intell., 28(2):127–162,
1986.

[6] de Kleer, J. Problem solving with the ATMS. Artif. Intell., 28(2):
197–224, 1986.

[7] Reiter, R. A theory of diagnosis from first principles. Artif. Intell., 32
(1):57–95, 1987.

[8] Greiner, R., Smith, B. A., and Wilkerson, R. W. A correction to the
algorithm in reiter’s theory of diagnosis. Artif. Intell., 41(1):79–88,
1989.

[9] Inoue, K. Linear resolution for consequence finding. Artif. Intell., 56
(2-3):301–353, 1992.

[10] Nabeshima, H., Iwanuma, K., Inoue, K., and Ray, O. Solar: An auto-
mated deduction system for consequence finding. AI communications,
23(2-3):183–203, 2010.

[11] Rocktäschel, T. and Riedel, S. End-to-end differentiable proving.
In Neural Information Processing Systems 2017, pages 3788–3800,
2017.

[12] Sato, T. Embedding tarskian semantics in vector spaces. In Workshops
at the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[13] Sakama, C., Inoue, K., and Sato, T. Linear algebraic characterization
of logic programs. In International Conference on Knowledge Sci-
ence, Engineering and Management, pages 520–533. Springer, 2017.

[14] Nguyen, T. Q., Inoue, K., and Sakama, C. Enhancing linear algebraic
computation of logic programs using sparse representation. volume
325 of EPTCS Online Proceedings of ICLP (2020), pages 192–205,
2020.

[15] Aspis, Y., Broda, K., and Russo, A. Tensor-based abduction in
horn propositional programs. In ILP 2018, volume 2206 of CEUR
Workshop Proceedings, pages 68–75, 2018.

[16] Console, L., Dupré, D. T., and Torasso, P. On the relationship between
abduction and deduction. Journal of Logic and Computation, 1(5):
661–690, 1991.

[17] Apt, K. R. and Bezem, M. Acyclic programs. New Generation
Computing, 9:335–364, 1991.

[18] Selman, B. and Levesque, H. J. Abductive and default reasoning: A
computational core. In AAAI, pages 343–348, 1990.

[19] van Emden, M. H. and Kowalski, R. A. The semantics of predicate
logic as a programming language. J. ACM, 23(4):733–742, 1976.

[20] Gainer-Dewar, A. and Vera-Licona, P. The minimal hitting set
generation problem: algorithms and computation. SIAM Journal on
Discrete Mathematics, 31(1):63–100, 2017.

[21] Ignatiev, A., Morgado, A., and Marques-Silva, J. PySAT: A Python
toolkit for prototyping with SAT oracles. In SAT, pages 428–437,
2018.

[22] Bunch, J. R. and Rose, D. J. Sparse matrix computations. Academic
Press, 2014.

[23] Koitz-Hristov, R. and Wotawa, F. Applying algorithm selection to
abductive diagnostic reasoning. Applied Intelligence, 48(11):3976–
3994, 2018.

[24] Koitz-Hristov, R. and Wotawa, F. Faster horn diagnosis-a per-
formance comparison of abductive reasoning algorithms. Applied
Intelligence, 50(5):1558–1572, 2020.


