Speculative Computation by Abduction

under Incomplete Communication Environments

Ken Satoh
Hokkaido University,
N13WS8 Sapporo 060-8628 Japan
ksatoh@db-ei.eng.hokudai.ac.jp

Koji Iwanuma
Yamanashi University

4-3-11 Takeda, Kofu 400-8511 Japan

iwanuma@esi.yamanashi.ac.jp

Abstract

In this paper, we present a method of problem solving
- multi-agent systems when communication between
agents is not guaranteed. Under incomplete communi-
cation environments such as the Internet, the commu-
nication might fail and a reply might be significantly
delayed. Therefore, research of problem solving under
mcomplete communication is very important.

To solve the problem, we propose a method using ab-
duction. Abduction is a way of reasoning where some
hypothesis will be used to complement unknown infor-
mation. The idea is as follows. When communication
15 delayed or failed, then we use a default hypothesis as
a tentative answer and continue computation. When
some response is obtained, we check consistency of the
response and the current computation. If the response
1s consistent, then we continue the current computa-
tion; else if the response is inconsistent, we seek an
alternative computation. This way of computation is
called speculative computation, since computation us-
g a tentative answer would lead to a significant ad-
vantage if it succeeds.

In this paper, we restrict our attention to a master-
slave multi-agent system and propose an implementa-
tion of speculative computation and show that abduc-
tion plays an wmportant role in speculative computa-
tion.

Katsumi Inoue
Kobe University

Rokkodai, Nada, Kobe 657-8501 Japan

inoue@eedept.kobe-u.ac.jp

Chiaki Sakama
Wakayama University
Sakaedani, Wakayama 640-8510 Japan

sakama@sys.wakayama-u.ac.jp

1. Introduction

In this paper, we propose a method of speculative
computation using abduction in multi-agent systems
when communication is incomplete.

In most of the current research on multi-agent sys-
tems, people assume that communication of agents is
guaranteed. Also, when an agent asks a question to
other agents, a process is suspended until some re-
sponse from other agents is obtained. Under incom-
plete communication environments such as the Inter-
net, however, these assumptions are not guaranteed;
messages between agents might be lost or significantly
delayed. Therefore, research of problem solving under
incomplete communication is very important.

Moreover, even if communication is guaranteed, we
have a similar situation when an agent needs to com-
municate with a user and the user is absent or when
the computation in other agents takes much time be-
fore sending an answer. These cases can also be viewed
as if communication was lost, and again represent sit-
uations under incomplete communication.

As an example of incomplete communication, con-
sider the following meeting room reservation.

e There are three persons A, B and C' to attend the
meeting.

o If a person is available, then he/she will attend the
meeting.

e We ask a person whether he/she is free or not.

e If all the persons are available, we reserve a big
room.

e Ifonly two persons are available, we reserve a small
room.

Suppose that we have answers from A and C' that they
are free but we do not have an answer from B, since
the communication is lost or he/she is absent. If we
follow the requirement that the communication must
be completed before taking any further action, then,
we cannot reserve a room until we get an answer from
B. In ordinary life, however, if we know that B is nor-
mally free or expect that B is free, then we tentatively
conclude that all the people are free and, therefore we
reserve a big room. Eventually, if we know from B’s
reply that B is actually busy, then, we change the reser-
vation of the big room into a small room. Moreover,
there are other effects of speculative computation for
reducing risks. Suppose that reservation of the above
meeting rooms is very crowded, so that there are pos-
sibilities that we cannot reserve a room if the date is
very near. Therefore, reserving a room in advance by
estimating participants reduces a risk ! .

In problem solving like the above, it is important to
handle default information and tentative conclusion. In
this paper, we propose a multi-agent system where we
use defeasible information by extending abductive rea-
soning or default reasoning widely used in nonmono-
tonic reasoning in Al [Reiter80, Eshghi89, Kakas98].
The basic idea of this method is as follows.

1. The agent A prepares a default answer for a ques-
tion in advance.

2. When an agent A asks a question to another agent
B, the agent A uses the default value as a tentative
answer and continues a computation along with
the tentative answer.

3. When the response comes from the agent B,

e if the response confirms the default answer,
then the agent A continues the computation.

e if the response is inconsistent with the default
answer, the agent A withdraws the compu-
tation process with the default answer and
restarts a computation with the true answer.

We assume that the default answer is prepared to cover
the normal answer of each agent. This means that the
response is usually consistent with the default answer
and we, therefore, expect that the preceding computa-
tion is usually effective.

In this paper, we restrict our attention to a master-
slave multi-agent system where the master uses spec-
ulative computation, and propose an implementation

1 Of course, in an actual setting, there is a tradeoff between
the above risk and a penalty when we cancel the room.

of a speculative framework using abduction. Then, we
show an effect of speculative computation with an ex-
ample.

The structure of the paper is as follows. In Section 2,
we discuss relationship between speculative computa-
tion and abduction. In Section 3, we give a formal
definition for speculative computation in terms of logic
programming. In Section 4, we propose a method of
speculative computation based on an abductive proof
procedure, and in Section 5, we give an example of ex-
ecution by the procedure. In Section 6, we mention
related work and in Section 7, we summarize the con-
tributions of this paper and discuss future research.

2. Relationship between Speculative
Computation and Abduction

We complement unknown information with a default
and continue a computation speculatively. If the con-
trary to the default is found, then an alternative com-
putation is considered. Given a program P, a goal G,
and a set A of atoms representing default hypotheses,
speculative computation of the goal G is defined as

e PUH =G,
e P UH is consistent,
o 1 CA.

In the above, hypotheses in A supplement missing in-
formation in P to derive G.

The above situation is characterized using abduc-
tion. Abduction computes a set of hypotheses which
accounts for a given observation in a program. In the
above speculative computation, regarding G as an ob-
servation, the set H is considered an ezplanation of G
in the program P.

Thus, speculative computation is characterized by
abduction. Comparing the two, in speculative compu-
tation, hypotheses H might be replaced by the “real”
information which are known during the computation
of G. In this case, the answer of the goal might change
according to the real value. By contrast, in abduc-
tion, the observation G is initially given and the set A
of hypotheses is, once assumed, never revised during
computation of explanations.

In spite of such differences, we later show that we
can utilize an abductive proof procedure in logic pro-
gramming to realize speculative computation.

3. Framework of Speculative Computa-
tion in Master-Slave System

Definition 1 Let A be an atom. We sometimes call
A a positive literal as well. We call an expression ~ A

a negative literal where ~ expresses negation as failure.
Let @ be a (positive/negative) literal. We define ~~

Q=0Q.

Definition 2 A speculative framework for a master-
slave system SFyrs is a quadruple (X,&€, A, P) where

e Y is a finite set of constants. We call an element
in X a slave agent identifier.

e & 18 a set of predicates called external predicates.
When @ is a literal with an external predicate and
S is a slave agent identifier or a variable ranging
over X, we call Q@S an askable literal. We define
~ (Q@S) as (~ Q)@S.

e A is a set of ground askable literals satisfying the
following condition:

A contains either A@S or ~ A@S, but
not both, for every ground atom A us-
ing an external predicate and every slave
agent identifier S? .

We call A a default answer set. Each element of
A 1s used for a default answer for a corresponding
askable literal.

e P is a normal logic program, that is, a set of rules
of the form:

H « Bl,Bz, aBn

where

— H is an atom with a non-external predicate,
and

— each of By, ..., B, is either a (positive / neg-
ative) literal or an askable literal.

Let R be a rule of the form H «+ By, By, ..., B,.
We call H a head denoted as head(R) and
By, ..., By a body denoted as body(R). head(R)
1s non-empty, but if there is no literal in the body,
body(R) =). We denote the set of all the ground

instances of rules in P as ground(P).

An askable literal Q@S is a kind of syntax sugar so
that we augment arguments of ¢ by S. That is, if
Q=p(t1, ... tn) (~ p(t1, ..., t;)) with an external pred-
icate p and terms ¢1,...,1,, QS expresses a formula
p(t1, s tn, S) (~ p(t1, ..., tn,S)). We use this special
notation, since we would like to emphasize S as a spe-
cial argument expressing a slave agent identifier.

Intuitively, an askable literal has two kinds of mean-
ing.

2 Note that we can have different default values for different
agents. For example, A@S; and (~ A)@S, are possible for Sy
and Ss.

1. An askable literal Q@S in a rule in P represents a
question a master agent asks to a slave agent S.

2. An askable literal in A represents the default truth
value; if AQS € A, A is normally true for a ques-
tion to an agent S, and if ~ A@S € A, A is nor-
mally false for a question to an agent S

Example 1 The example of meeting room reservation
in Introduction 1s represented as the following specula-

tive framework SFys = (X, €, A, P)

¥ ={a,b,c}
E={free}
A = {freeQa, free@b, freeQc}
P is the following set of rules3
meeting([a,b]) +

available(a), available(b), ~ available(c).
meeting([b,c]) +

~ available(a), available(b), available(c).

meeting([c,a]) +
available(c),~ available(b), available(a).
meeting([a,b, c]) «
available(a), available(b), available(c).
available(P) « free@P.
plan(small_room, [a, b]) < meeting([a,b])

(.
plan(small_room, [b, c]) < meeting([b,c]).
plan(small_room, [c, a]) « meeting([c, d]

(

).
plan(large_room,[a,b, c]) « meeting([a,b,c]).

4. An Implementation of Speculative
Computation

In this section, we show an implementation of spec-
ulative computation. The execution of speculative
framework i1s based on two phases, a process reduction
phase and a fact arrival phase. The process reduction
phase 1s a normal execution of a program in a mas-
ter agent and the fact arrival phase is an interruption
phase when an answer arrives from a slave agent.

A process consists of the following objects; (a) the
current status of computation, (b) already used de-
faults in the process and (c) answer substitutions of
the initial query. Each process represents an alterna-
tive way of computation. Intuitively, processes are cre-
ated when a choice point of computation is encountered
such as case splitting. A process ends successfully if all
the computation is done and the used defaults have

3 A string beginning with an upper case letter represents a
variable and a string beginning with a lower case letter represents
a constant.

not been contradictory with the current returned an-
swers. A process fails when some used default is found
to contradict the newly returned answer.

In the process reduction phase, we reduce an ac-
tive process set (see Definition 6 for the formal defi-
nition) into a new process set. Reduction for a pos-
itive /negative literal corresponds with treatment of
a positive/negative literal in abductive derivation of
[Eshghi89]. Reduction for a literal of the form fail(...)
corresponds with consistency derivation of [Eshghi89].

What differs from derivation of [Eshghi89] is treat-
ment of askable literals as follows. During the reduc-
tion, for a process using a default, the default is as-
sumed unless its complement has already been assumed
or found to be true, whereas the process itself will be
killed when the complement of the default has been
found to be true. Simultaneously, if the real value of
the default is not decided yet, the default will be asked
to a slave agent. On the other hand, a process using the
complement of a default will be suspended, since the
complement is an exceptional situation in which the
preceding computation will probably fail. Therefore,
we must check the confirmation of the complement of
the default by waiting for an answer from a slave agent.

When an answer to confirm a default comes from
a slave agent, we remove suspended processes waiting
for the complement of the default. When an answer
to deny a default comes from a slave agent, we remove
processes using the default and resume suspended pro-
cesses waiting for the complement of the default. The
last mechanism corresponds with consideration of al-
ternative computation when the default contradicts a
returned answer.

4.1. Preliminary Definitions

We define the following concepts for process reduc-
tion.

Definition 3 An extended literal is one of the follow-
ing expression.

e a positive literal.
e a negative literal.
e an askable literal.

o fail(Ly,...,Ly) where L; is a literal (positive, neg-
ative or askable).

fail(Ly, ..., Ly) is used to show that there is no proof
for one of L;.

Definition 4 An active process is a ftriple

(GS,AD, AN S) which consists of

e (G5 A set of extended literals to be proved called
a goal set.

e AD: A set of askable literals assumed already
called assumed defaults.

o ANS: A set of answer substitutions of variables
in initial goals.

Definition 5 A suspended process is a quadruple

(SG,GS,AD, ANS) which consists of

e SG: An askable literal waiting for an answer from
a slave agent in GS called a suspended literal.

o (GS: A goal set
o AD: Assumed defaults

o ANS: A set of answer substitutions of variables
in initial goals.

We use the following four sets for process reduction.
Definition 6

e An active process set APS is a set of active pro-
cesses.

o A suspended process set SPS is a set of suspended
processes.

o Already asked queries AAQ 18 a set of askable lit-
erals.

e Returned facts RF is a set of askable literals.

AAQ is used to avoid from asking redundant questions
to slave agents, and RF is a set of real information
returned from slave agents about askable literals.

4.2. Process Reduction Phase

In the following reduction, we specify changed AP.S,
SPS, AAQ, RF as NewAPS, NewSPS, NewAAQ,
NewRF. Otherwise each APS, SPS, AAQ ,RF is
unchanged.

Initial Step Let G\S be an initial goal set. We give
(GS,0,0) to a proof procedure. That is, APS =
{GS,0,0)}. And let SPS = AAQ = RF = 0.

We iterate Step 1, Step 2 and Step 3.

Step 1 If there is an active process (#, AD, ANS) ap-
pears in APS, then output assumptions AD — RF and
substitutions for variables AN S and halt.

Step 2 Otherwise, select an active process
(GS,AD, ANS) from APS and select an extended lit-
eral Lin GS. APS' = APS — {{GS,AD,ANS)} and
GS =GS —{L}.

Step 3 For the selected extended literal L, do the fol-
lowing.

e If L is a positive literal, then
/* processing usual resolution */
NewAPS = APS'U
{({body(R)} U GS")0,AD, ANSO)|
there exists R € P
and a most general unifier(mgu) ¢

s.t. head(R)# = L6}

e If L is a ground negative literal, then
/* processing negation as failure */
NewAPS = APS'U{(NewGS,AD, ANS)}
where NewGS =
{ Fail (body(RO))
there exists & € P and an mgu 0
s.t. head(R)0 = LO} UGS’

o If L is fail(BS), then
/* showing a literal B in BS is not derived */
—if BS =0, NewAPS = APS’.
— if BS # () then
* Select B from BS and BS' = BS— {B}.

x 1f B is a positive literal,

NewAPS =
APS"U{(NewGSUGS',AD, ANS)}
where NewGS =

{fail(({body(R)} U BS")0)]|
there exists & € P and an mgu 0
s.t. head(R)0 = B}
* if B is a ground negative literal or a
ground askable literal,

NewAPS = APS'U
{{~B} UGS AD, ANS)}U
{{fail(BS")} UGS’ AD, ANS)}

e If L is a ground askable literal, @@}, then

—if L ¢ AAQ and ~L & AAQ, then
send a question @ to a slave agent S and
NewAAQ = AAQU {L}.
/¥ if L or ~L is not asked, ask Q) to S */

—if L e AD or L € RF then
NewAPS = APS"U{(GS'",AD, ANS)}
/* if L is already assumed or L is found to
be true, continue */

—elseif ~L € AD or ~L € RF then
NewAPS = APS',
/* else if ~ L is already assumed or L is found
to be false, kill this process */
— else if L € A then
NewAPS =

APS'U{(GS'",AD U{L}, ANS)},
/* else if truth value of L is not decided yet
and the default value of L 1s “yes”, then con-
tinue computation speculatively */
—elseif ~L € A, then

NewAPS = APS’ and

NewSPS =SPSU{{(L,GS'" AD, ANS)}
/* else if truth value of L is not decided yet
and the default value of L is “no”, then sus-
pend this process */

In Step 1, when (GS is finished, we output AD— RF
as assumptions in stead of AD. This is because an
askable literal in RF represents real value of the literal,
and, therefore, AD— RF represents assumptions which
are not confirmed yet.

In Step 3, if a selected literal is Q@S| then the case
of Q@S € AD and ~Q@S € RF cannot occur. This is
because the following fact arrival phase always avoids
this case by removing processes with Q@S € AD when
~ (@) arrives from a slave agent S.

4.3. Fact Arrival Phase

Suppose @) comes from a slave agent S. Then, do the
following after one step of process reduction is finished.

e NewRF = RFU{QQS}
/* Store the real truth value for QQS */
o If Q@S € A then
NewSPS =S5PS—-
{(SG,GS,AD,ANS) € SPS|SG =~QQ5}

/* if a returned answer confirms a default value,
continue computation and remove processes wait-

ing for ~Q@S. */
o If ~Q@S € A then
NewAPS = APS U ResumedPS—
{{GS,AD,ANS) € APS| ~ Q@S € AD},

and
NewSPS =SPS — ResumedPS—
{(8G,GS,AD,ANS)€eSPS| ~Q@Se AD}
where ResumedPS =
{GS, AD, ANS)]
(RQQS,GS,AD;ANS)eSPS}.

/* if a returned answer contradicts a default value,
mvoke processes waiting for the answer and re-
move processes using the default */

4.4. Correctness of the Proof Procedure

In this subsection, we show correctness of the above
procedure. We assume familiarity of the notions of
stratified programs and the perfect model semantics
introduced in [Przymusinski88].

Definition 7 Let P be a stratified logic program * .
Let R be a set of added facts. We define PEF as
follows.

fPRF —

{head(R) + (body(R) — RF)|R € ground(P)
s.t. for every Q@S € RF, ~QQS ¢ body(R)}

PEF intuitively means a reduced ground program re-

flecting the additional facts.

Definition 8 Let OD be a set of askable literals. We
define F(OD) as follows.
F(OD) =
{Q@QS « |Q is a positive literal and Q@5 € OD}

Theorem 1 Let SFys = (X,E,A,P) be a speculative
framework where P 1s a stratified logic program. Let
GS be an initial goal set. Suppose that (B, AD,0) is
found and RF 1is the current set of returned facts. Let
OD = AD — RF be output assumptions. Then, for the
perfect model M for PR U F(OD), M = GS6.

Sketch of Proof: Since P is astratified logic program,
sois P UF(OD). Then, we can construct an abduc-
tive derivation [Eshghi89] from process reduction steps
from (G'S,0,0) to (B, AD,). This derivation is correct
for stratified logic programs by the result of [Eshghi89].
This means M |= GS6. O

5. Example

We use the program in Example 1 and take the fol-
lowing strategy for process reduction.

e When we reduce a positive literal, new processes
are created along with the rule order in the pro-
gram which are unifiable with the positive literal.

e We always select a newly created or a newly re-
sumed process and a left-most literal.

The following is an execution trace for plan(L,R).
We assume that answers from the agents a and b
come at Step 25 and Step 28 respectively. We show
APS,SPS, AAQ, RF only when a change is occurred.
We abbreviate small_room as sr, large_room as Ir
meeting as mt, avatlable as av and free as fr.

4 A stratified program containing askable literals is defined in
the same manner as the usual one.

SPS =0, AAQ = 0, RF = §

({mt([a,0])},0, {R=s7,L=[a,b]}),
({mt([b,e])}, 0, {R=sr,L=[b,]}),
({mt([e,a))}, 0, {R=sr,L=][c,d]}),
{mt([a,b,)}, 0, {R=1r,L=][a,b,c]})}

{av(a), av(b),~av(c)}, B, {R=sr, L=[a,b]}),
AP, APy, APs % }

4. APS = {
{frQ@a, av(b), ~av(c)},0, {R=sr, L=[a,b]}),
APy, APy, AP}

5. APS = {
({av(), ~av(e)}, {fraa), {R=sr, L=[a,]}),
APy, AP>, APs},

AAQ = {frQa}
fr is asked to the slave agent a.
6. APS ={

{fr@b, ~av(c)}, {fr@a}, {R=sr,L=[a,b]}),
APy, AP, APs}
7. APS ={
({~arle)), {fra, frov), {(R=sr, L=[a, 1}),
AP, AP;, AP},
AAQ = {frQa, frab}
fr is asked to the slave agent b.
8. APS ={
{fail(fr@c)},{frQa, frab},
{R=sr,L=]a,b]}),
APy, AP, APs}
9. APS ={
{~ frQc},{frQa, fr@b}, {R=sr,L=][a,b]}),
APl,APQ,APE;}
10. APS = {AP,, APs, AP3),
{~ fr@c, §,{frQa, frab},
{R=sr,L=[a,]},
AAQ = {frQa, fr@Qb, ~ fr@c}
~ fris asked to the slave agent c.
11. APS = {
{{~av(a),av(b),av(c)},Bd, {R=sr, L=[b,c]}),
AP, APs}
12. APS =/
{fail(fr@Qa), av(d),av(c)},,
{R=sr,L=[b,]}),
AP, APs}
13. APS = {
{~ frQa,av(b),av(c)}, B, {R=sr, L=1[b,c]}},
APQ,APg}
14. APS - {APQ,APg},

5 From now on, we abbreviate {({mt([b,c])},8,{R = sr,L =
[b,c]}), as APy, ({mt([c,a])},0,{R = sr,L = [c,al}) as AP>,
and {({mt([a,b,c])},0,{R =Ilr,L = [a,b,c]}) as AP;.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

SPS =1
(~ fr@c, 0, {frQa, fr@b}, {R=sr, L=[a,b]}),
(~ fr@Qa, {av(d),av(c)}, 0, {R=sr,L=1[b,c]}}}
APS ={
{av(a), ~av(b),av(c)}, B, {R=sr,L=[c,a]}),
APs}
APS ={
{frQ@a, ~av(b),av(c)}, 0, {R=sr, L=[c,al}),
APs}
APS ={
({~ar(t), av(e)), { fra), (R=sr, L=[c,a]})
APy}
APS ={
({fail (fr@b),av(c)},{frQa},
{R=sr,L=]c,a]}),
APs}
APS ={
{~ frab av(c)},{frQa},{R=sr,L=]c, a]}),
APs}
APS = {APs},
SPS =1
(~ fr@c, 0, {frQa, fr@b}, {R=sr, L=[a,b]}),
(~ fr@Qa, {av(d),av(c)}, B, {R=sr, L=1[b,c]}},
<~ Jr@b, {av(c)}a {fr@a},
{R=sr,L=]ec,a]})}
APS ={
({av(a),av(b),av(c)},0,{R=1r,L=]a,b,c]})}
APS ={
{frQ@a,av(b),av(c)}, 0, {R=Ilr,L=[a,b,c]})}
APS ={
({av(®), av(e)), { fraa}, (R=lr, L=[a,b,]}))
APS ={
{fr@b,av(e)}, {fr@a},{R=Ilr,L=Ja,b,c]})}
fr is returned from a!!
SPS =1
(~ fr@c, 0, {frQa, fr@b}, {R=sr, L=[a,b]}),
<~ Jr@b, {av(c)}a {fr@a},
{R=sr,L=lc,al})},
RF = {fr@a}
APS ={
Hav(e)},{frQa, frab}, {R=Ilr,L=Ja,b,c]})}
APS ={
{fr@Qc}, {fr@Qa, fraby {R=Ilr,L=[a,b,c]})}
~ fr is returned from b!!
APS ={
{av(e)}, (Fraa}, (R=sr, L=[c,a]}}),
SPS =0, RF = {fr@a,~ frab)
APS ={
({fr@c} {fr@a}, {R=sr,L=[c,a]})}
APS ={
(B, {frQc, fr@a}, {R=sr,L=[c,a]})},
{R=sr,L=]c,a]} and
{fr@Qc, fr@a} — RF = {frQc} is returned.

At Step b, a default fr@a is assumed and computation
of this process continues and at the same time, the real
value of fr for a is asked to the slave agent a. If we had
to wait for an answer from the agent a, we would have
to suspend this process. This is an effect of speculative
computation.

At Step 10, the complement of a default, ~ fr@c is
checked and computation of this process is suspended
and at the same time, the real value of fr for ¢ is asked
to the slave agent ¢. We suspend this process, since the
process uses the complement of a default which is nor-
mally false and therefore, the probability of succeeding
this computation is low.

At Step 25, the answer from a is returned. Since
this answer confirms the default, we remove processes
waiting for the complement of the default and continue
the reduction.

At Step 28, the answer from b is returned. Since
this answer denies the default, we remove processes
assuming the default and resume processes waiting for
the complement of the default.

At Step 30, an answer of attending a and ¢ and
reserving small_room is obtained with the default as-
sumption “c is free”.

6. Related Research

Speculative computation has originally been inves-
tigated in the context of parallel computing in order
to speed computation [Burton85, Gregory93]. When
some processors are idle on a parallel computer, these
idle processors are used to execute computation which
1s sometimes useful and sometimes unnecessary. The
most popular application of speculative computation
is parallel search. In parallel search, some branches
are traversed in parallel speculatively. When a solu-
tion is found in a branch, searching other branches are
aborted.

There are some research applying nonmonotonic
reasoning or abductive reasoning to multi-agent sys-
tems [Morgenstern90, Baral91, Poole97, Kowalski99].

[Morgenstern90] formalizes agent’s reasoning of an-
other agent’s nonmonotonic reasoning so that an agent
predicts another agent’s default conclusions. [Baral91]
gives semantics of combination of various agents’ differ-
ent knowledge so that consistent semantics is obtained
even if inconsistency arises from a union of each agent’s
knowledge. [Poole97] adopts abductive logic program-
ming with an uncertainty measure in his Independence
Choice Logic for multi-agent systems. [Kowalski99]
uses abduction to assimilate obtained information into
agent’s current knowledge. However, as far as we know,

there are no research applying defeasible reasoning to
speculative computation.

We use a default assumption to continue specula-
tive computation. If we regard this default assumption
as a current fact whose truth value can be changed
as time goes, then our work can be regarded as a re-
stricted form of planning in dynamic environments. In
this viewpoint, research on such planning is very much
related. In fact, [Hayashi99] gives a dynamic proof pro-
cedure in which a knowledge base can be changed along
with observed facts in the context of logic program-
ming. Although we can use the techniques of planning
under dynamic environments, these research, however,
are different from ours in motivation.

7. Conclusion

The contributions of this paper are summarized as
follows.

e We presented speculative computation by abduc-
tion in multi-agent systems and showed that this
can be used for incomplete communication envi-
ronments.

e We proposed a proof procedure of speculative com-
putation in a master-slave multi-agent systems
and showed that it returns correct answers for the
perfect model semantics in a stratified logic pro-
gram.

The following issues remain for future research.

e We extend to other kind of multi-agent systems
such as a system where every agent can communi-
cate each other.

e We avoid recomputation in a process when there
are some fragments of computation already done
in an alternative process.

e We investigate when we let a process compute

speculatively, since speculative computation might
For example, in the
meeting room reservation example, cancelling the

be sometimes expensive.

room might cause a penalty fee and so, there
is trade-off between preceding reservation and its
risk. Therefore, we need to estimate the trade-off
for effective speculative computation.

e Since we might not always know a default value for
a query, we need to incorporate a learning mech-
anism of a default value through observation of
user’s behavior.

Acknowledgments This research is partly supported
by Grant-in-Aid for Scientific Research, “Construction
of Logical Multi-agent Systems under Incomplete Com-
munication Environments”, The Ministry of Educa-
tion, Japan. We also thank Ryusuke Masuoka from Fu-
jitsu Laboratories and Prof. Yasuhiko Kitamura from
Osaka City University for useful discussions.

References

[Baral91] Baral, C., Kraus, S. and Minker, J., “Com-
bining Multiple Knowledge Bases”, IEEE Trans.

Knowledge and Data Engineering, vol. 3., pp. 208
- 220 (1991).

[Burton85] Burton, F. W., “Speculative Computation,
Parallelism, and Functional Programming”, IEEE
Transactions on Computers, vol. ¢-34 pp. 1190 —
1193 (1985).

[Eshghi89] Eshghi, K., Kowalski, R. A., “Abduction
Compared with Negation by Failure”, Proceedings
of ICLP’89, pp. 234 — 254 (1989).

[Gregory93] Gregory, S., “Experiment with Specula-
tive Parallelism in Parlog”, Proceedings of ILPS’93,
pp. 370 — 387 (1993).

[Hayashi99] Hayashi, H., “Replanning in Robotics by
Dynamic SLDNF” | Proceedings of IJCAI-99 WS on
Scheduling and Planning Meet — Real-Time Moni-
toring in a Dynamic and Uncertain World (1999).

[Kakas98] Kakas, A. C., Kowalski, R., Toni, F.; “The
Role of Abduction in Logic Programming”, Hand-
book of Logic in Artifictal Intelligence and Logic
Programming 5, pp. 235 — 324 (1998).

[Kowalski99] Kowalski, R. A.; Sadri, F., “From Logic
Programming to Multi-Agent Systems”, Annals of
Mathematics and Artificial Intelligence, vol. 25,
pp-391-419 (1999)

[Morgenstern90] Morgenstern, L., “A Formal Theory
of Multiple Agent Nonmonotonic Reasoning”, Pro-

ceedings of AAAI’90, pp. 538 — 544 (1990).

[Poole97] Poole, D., “The Independent Choice Logic
for Modeling Multiple Agents under Uncertainty”,
Artificial Intelligence, 94(1-2), pp. 7 — b6 (1997).

[Przymusinski88] Przymusinski, T., “On the Declara-
tive Semantics of Stratified Deductive Databases
and Logic Programs”, Foundations of Deductive
Databases and Logic Programming, Morgan Kauf-

mann Publishers, pp. 193 — 216 (1988).

[Reiter80] Reiter, R., “A Logic for Default Reasoning”
Artificial Intelligence, 13, pp. 81 — 132 (1980).

