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Abstract

Partial deduction is known as an optimization technique in logic pro-
gramming. In the context of abductive logic programming, however, we
present in this paper that normal partial deduction does not preserve
explanations for abductive reasoning. Then we provide an alternative
method of partial deduction, called abductive partial deduction, which
is shown to preserve the meanings of abductive logic programs. A
method of partial abduction is also introduced as an optimization for
abductive reasoning in logic programs.

1 Introduction

Partial deduction [Kom92] is an optimization technique in logic program-
ming, which performs deduction on a part of a program while retaining the
meaning of the original program. Partial deduction is used in various ex-
tensions of logic programming, and is known to preserve the semantics of
normal logic programs [TS84, LS91, Seki9l, Seki93] and disjunctive logic
programs [SS94, BD94].

Abductive logic programming [KKT92] is one of the extensions of logic
programming, which realizes a mechanism of abductive reasoning in Al. Re-
cent studies have widely investigated theoretical aspects of abductive logic
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programming, then optimizing abductive logic programs is becoming an im-
portant issue from practical viewpoints.

In abductive logic programming, a primary goal is computing explana-
tions for a given observation. In particular, selecting the “best” explanations
among many candidate explanations is important. Considering partial de-
duction in abductive logic programs, our special concern is the preservation
of such explanations. However, since the inference mechanism in abductive
logic programming is different from standard logic programming, it is not
clear whether partial deduction techniques are directly applicable to abduc-
tive logic programs.

In this paper, we investigate the effect of partial deduction in abduc-
tive logic programs. We first show that normal partial deduction does not
preserve the meanings of abductive logic programs. Then we propose an
alternative method of partial deduction, called abductive partial deduction,
which preserves explanations in abductive reasoning. Some variants of ab-
ductive partial deduction are introduced to preserve best explanations. We
finally apply the technique of abductive partial deduction to partial abduc-
tion, which optimizes abductive reasoning in logic programs.

The rest of this paper is organized as follows. In Section 2, we review
abductive framework and abductive logic programming. In Section 3, we
present the problem of normal partial deduction in abductive logic programs
and propose new partial deduction techniques. Section 4 addresses a method
of partial abduction. Section 5 discusses related issues and Section 6 sum-
marizes the paper.

2 Abductive Framework

Abduction reasons from observation to explanation, which is formally pre-
sented as follows.

Given a background theory 1" and an observation O, abduction is defined
as an inference of an explanation E of O such that

TUE |=O where TUE is consistent. (1)

Abductive logic programming [KIKKT92] is a form of such abductive frame-
work in which 7' is given as a logic program.
A normal logic program is a finite set of clauses of the form:

A« BiAN...ANBp Anot By 41 A...Anot B, (n>m >0) (2)

where A and B;’s are atoms and not is the negation-as-failure operator.
The left-hand side of the clause (2) is the head, and the right-hand side is
the body. A clause with the empty head (i.e., A = false) is an integrity
constraint. A program containing no not is a Horn logic program, and a
Horn logic program without integrity constraints is a definite logic program.
We often use the Greek letter I' to denote a conjunction (possibly true) in



the body. Since we are concerned with the semantic aspect of abductive
logic programs, we consider ground programs throughout the paper.

An abductive logic program is defined as a pair ( P, A), where P is a nor-
mal logic program and A is a set of atoms called abducibles. An abductive
logic program is called an abductive Horn program if P is a Horn logic pro-
gram, and especially called an abductive definite program if P is a definite
logic program. We often write an abductive logic program just as P when
the set of abducibles A is clear from the context.

A declarative semantics of abductive logic programs is given by the no-
tion of belief sets [IS93]. First, given a normal logic program P and its
interpretation I, I is a stable model [GL88] of P if I coincides with the least
Herbrand model of the Horn logic program P! defined as

Pl = { A« By A...AB,, | thereis a ground clause of the form (2)
from P such that {By11,..., B} NI =10}

A program P is consistent if it has at least one stable model. Next, given an
abductive logic program ( P, A), an interpretation I is a belief set of P (wrt
E) if I is a stable model of the normal logic program P U E where E C A.!
An abductive logic program has multiple belief sets in general.

In an abductive logic program, abductive reasoning is characterized as
follows. Let ( P,/ A) be an abductive logic program and O a ground atom
which represents an observation.? Then, a set E C A is an explanation of O
in P iff O is true in every belief set of P wrt E. In this sense, we consider
the entailment relation in (1) under the belief set semantics.?

In abductive reasoning, computation of the best explanations is partic-
ularly important, since there might be many candidate explanations which
can account for an observation from the relation (1). A pre-specified set of
abducibles A is one of such conditions to restrict candidate hypotheses. Fur-
ther criteria for choosing explanations are proposed in the literature. Among
them, we consider the following ones in this paper.

(a) minimal explanation [Pop73, CP86, Poo89, etc.]
An explanation E is minimal iff there is no other explanation F' such
that F' C E.

(b) least specific [Sti89] or least presumptive [Poo89] explanation
An explanation F is less specific than an explanation F' in P (written
E < F)iff PUF = E* An explanation E is least specific in P iff
there is no explanation F' in P such that F' < F.

n [KM90], belief sets are called generalized stable models.

2Without loss of generality, O is assumed to be a non-abducible ground atom [IS93)].

3We can consider an alternative definition of explanations such that F is an explanation
of O iff O is true in some belief set of P wrt E. Employing either definition is not important
in this paper.

“Here, F is identified with the conjunction of each abducible included in E.



(c) most specific [Sti89] or basic [CP86] explanation
An explanation F is more specific than an explanation F' in P (written
F <E)iff PUE = F. An explanation F is most specific in P iff F is
a minimal set satisfying the condition that there is no explanation F'
in P such that E < Fand E ¢ F.

Here, < is a pre-order relation and £ < F iff E < F and F £ E.

The condition (a) is usually imposed to avoid introducing unnecessary
assumptions. On the other hand, the criterion (b) or (c) is chosen depending
on applications. For instance, (b) is appropriate in natural language pro-
cessing, and (c) is useful in diagnostic tasks [Sti89]. Note that the definition
of the most specific explanation implies that any explanation F' such that
E < F contains E as a proper subset. The most specific explanation F is
one of such minimal sets satisfying the condition.

Example 2.1 ([Poo89]) Consider the program:

sore_leg <+ broken_leg, (3)
broken_leg < broken_tibia, (4)

where A = {broken_leg, broken_tibia}. Given the observation O = sore_leg,
{broken_leg} and {broken_tibia} are the two minimal explanations; {broken_leg}
is the least specific explanation; and {broken_tibia} is the most specific ex-
planation.

Also note that the least/most specific explanations are not necessarily
minimal explanations.

Example 2.2 Let P={ o0+« aAb, b< a} where A= {a,b} and {a} <
{a,b} < {a}. Then, both {a} and {a,b} are the least specific explanations
of o, while {a,b} is not a minimal explanation. On the other hand, let
P={o0o+a, a+ ¢, c+ aAb} where A= {a,b,c} and {a} < {c} <
{a,b}. Then {a, b} is a most specific explanation of o, while {a} is a minimal
explanation.

In this paper, when we use the term “best explanations”, we mean either
of the above three explanations.

3 Abductive Partial Deduction

3.1 Normal Partial Deduction does not Preserve Best Ex-
planations

We first examine whether partial deduction preserves explanations, espe-
cially best ones in abductive reasoning.

For a normal logic program P, partial deduction is defined as unfolding
between clauses as follows.



Given a clause C' from P,
C: H+ ANT,

suppose that C1,...,C are all of the clauses in P such that each of which
has the atom A in its head:

Ci: ATy (1<i<k).

Then normal partial deduction of P (with respect to C' on A) is defined as
the program 7r€VC, A}(P) (called a residual program) such that

where each C is defined as
Cl: H« TAL;.

When we simply say normal partial deduction of P (written 7 (P)),
it means normal partial deduction of P with respect to any clause on any
atom. Note here that when there is no C; having the atom A in its head,
the clause C' is just removed in the residual program W%; A}(P).

It is known that normal partial deduction preserves the least Herbrand
model semantics of definite logic programs [TS84], the perfect model se-
mantics of stratified logic programs [Seki91], and the stable/well-founded
semantics of normal logic programs [Seki90, Seki93].

Our concern here is whether normal partial deduction also preserves the
meanings of abductive logic programs. Unfortunately, the next example
shows that normal partial deduction does not preserve belief sets in general.

Example 3.1 In the program of Example 2.1, the set I = {sore_leg, broken_leg}
becomes a belief set of P with respect to the assumption {broken_leg}. On

the other hand, performing partial deduction on broken_leg in the clause (3)
generates the residual program:

sore_leg <+ broken_tibia,

broken_leg < broken_tibia,
in which the above set I is not a belief set anymore.

The above example shows that normal partial deduction does not pre-
serve (best) explanations either. For instance, in the original program,
sore_leg has two minimal explanations, {broken_leg} and {broken_tibia}.
However, {broken_tibia} is the unique minimal explanation in the residual
program. Moreover, the least specific explanation {broken_leg} is lost in the
residual program. On the other hand, if we perform partial deduction on



broken_tibia in the clause (4) of the original program, the residual program
contains the single clause:

soreleg < broken_eg,

and the most specific explanation {broken_tibia} is lost.

The problem is explained as follows. In standard logic programming, the
meaning of a program is given by the set of facts derived from the program
and normal partial deduction preserves such facts in general. In abductive
logic programming, however, the meaning of a program is given by the set
of “conditional consequences”. That is, new facts are possibly derived in a
program by assuming intermediate atoms as hypotheses. In such a situation,
causal relationships between atoms are also important and normal partial
deduction often loses such relations as presented in the above example.

Thus, to preserve the meanings of abductive logic programs we may need
some mechanism for reserving intermediate atoms during partial deduction.
To this effect, we introduce abductive partial deduction which includes such
mechanism.

3.2 Abductive Partial Deduction = Partial Deduction + Reser-
vation

Definition 3.1 Let ( P,.A) be an abductive logic program and C' a clause
from P of the form:

C: H+ AAT. (5)

Suppose that Cq,...,C} are all of the clauses in P such that each of which
has the atom A in its head:

Then abductive partial deduction of P (with respect to C' on A) is defined
as the residual program W?C,A}(P> such that

A (P = pPu{C,...,C.}, if Ais an abducible;
oA = (P\{C}Hu{cCi,...,C.}, otherwise,

where each C is a clause of the form:
Ci: H«TAT;. (7)

By 74(P), we mean abductive partial deduction of P with respect to any
clause on any atom.

The idea of abductive partial deduction is that when partial deduction
is performed on abducibles, abductive partial deduction retains the original



clause C' together with the unfolded clauses C;. With this mechanism, ab-
ductive partial deduction reserves intermediate atoms which could be used
as assumptions.

Now we first show that abductive partial deduction preserves belief sets
of abductive logic programs.

Lemma 3.1 ([Seki90, SS94]) Let P be a normal logic program. Then I is
a stable model of P iff I is a stable model of 7 (P). O

Theorem 3.2 Let ( P, A) be an abductive logic program. Then I is a belief
set of P iff T is a belief set of 74 (P).

Proof: Let I be a belief set of P. Then [ is a stable model of P U E for
some E' C A. Let us consider normal partial deduction of PUFE with respect
to any clause C' of the form (5) on any atom A. If A is not an abducible,
W%;A}(P UFE) = W?C;A}(P UE) = W?C;A}(P) UE. By Lemma 3.1, I is a
stable model of W%;A} (PUE), then so is TF?C;A}(P) U E. Hence, I is a belief
set of 77?0; A}(P). Else if A is an abducible, consider a tautological clause
C'=A+ Aand P = PU{C’}. Clearly, P’ does not change the meaning
of P. Then, I is a stable model of W%;A} (PUPE) iff I is a stable model of

i,y (P'UE). On the other hand, 7y, 4, (P'U E) = 1. 4y (P U E)U{C"}
holds, hence I is a stable model of W?C;A}(P UE)U{C'} = W?C;A} (PUE).
Next we show that I is also a stable model 77?0, A}(P) U E. The difference
between W?C;A}(P UFE) and ﬂfC;A}(P) U E is that if A is included in E, the
clause H < I is generated from C and A < by unfolding in 7Tf[40; Ay (PUE).
In this case, however, the clause is also derived in Trfc. A}(P) UFE from C and
A € E. Thus, I is a stable model of ﬂfC,A} (PUE) iff I is a stable model of
W?C;A}(P) U E. Hence, I is a belief set of ﬂfC;A}(P).

The converse is shown in the same manner. O

Corollary 3.3 Normal partial deduction preserves belief sets if unfolding is
performed on non-abducible atoms. a

Thus abductive partial deduction preserves the meanings of abductive
logic programs by reserving abducibles when unfolding. Reserving abducibles
is a sufficient condition but not always necessary.

Example 3.2 Let P={ o0+ aAp, p<+ q} where A= {a}. Then, all P,
7N (P), and 74 (P) have the belief sets ( and {a}.

The proof of Theorem 3.2 shows an alternative characterization of ab-
ductive partial deduction.

Corollary 3.4 Let (P, A) be an abductive logic program. Then, 74(P) =
7NV(P') where PP = PU{A+ A|Ac A} 0



That is, to compute abductive partial deduction we can use normal
partial deduction in a program containing tautological clauses for each ab-
ducible. For computing explanations, Theorem 3.2 implies that abductive
partial deduction preserves explanations, especially the best ones.

Corollary 3.5 For any observation O, E is an explanation of O in P iff £
is an explanation of O in 74(P). O

Example 3.3 Consider again the program of Example 2.1. Then abductive
partial deduction with respect to the clause (3) on broken_leg generates the
residual program:

sore_leg <+ broken_leg,
sore_leg <+ broken_tibia,

broken_leg < broken_tibia,

in which the minimal explanations {broken_leg} and {broken_tibia}, the
least specific explanation {broken_leg}, and the most specific explanation
{broken_tibia}, are preserved. On the other hand, if we perform abductive
partial deduction in the original program with respect to the clause (4) on
broken_tibia, the residual program coincides with the original program and
each explanation is also unchanged.

3.3 Further Optimization

In this section, we consider variants of abductive partial deduction in ab-
ductive Horn programs. Abductive Horn programs are used as background
theories for abduction in many studies. To compute best explanations in
abductive Horn programs, we can further optimize abductive partial deduc-
tion presented in the preceding section. Then we first consider optimizing
abductive Horn programs for the most specific explanations.

Let us introduce a couple of notations. The dependency graph of a Horn
program P is a directed graph in which each node presents a ground atom
and there is a directed edge from A to B (we say A depends on B) iff there
is a ground clause from P such that A appears in the head and B appears in
the body of the clause. A program is said acyclic with respect to abducibles
if the dependency graph contains no directed cycle that goes through two
abducibles. An abducible A is called terminal if A depends on no other
abducibles.

To compute most specific explanations in abductive Horn programs, we
modify abductive partial deduction of Definition 3.1 as follows:

TMSE (p) — P, if A is a terminal abducible;
AR (PA{CH ULCL,..., G}, otherwise.

The notion of 79 (P) is correspondingly defined as before.



The above definition presents that a program is unchanged when partial
deduction is performed on terminal abducibles, while unfolding is done as
usual when partial deduction is performed on atoms other than terminal
abducibles. We call such a variant as abductive partial deduction for MSE.

A program P is called separable if P contains no clause such that the
head has an abducible and the body includes non-abducibles. In a separable
program, an abducible can be defined only by abducibles. Thus, structural
knowledge about the relations between abducibles is completely aside from
the non-abducible atoms, which explains the name. Most of abductive pro-
grams in the literature are of this form. Now we have the following result.

Theorem 3.6 Let P be a separable abductive definite program and O an
observation. Then, for any most specific explanation £ of O in P, there is
an explanation F of O in 7M5F(P) such that E < F. Also, any explanation
F of O in 7M5F(P) is an explanation of O in P.

Proof: Let E be a most specific explanation of O in P. If partial deduction
is performed on non-abducible atoms, 7% (P) reduces to normal partial
deduction and the result follows by Corollary 3.3. Else if partial deduction is
performed on terminal abducibles, 75 (P) = P and the result also holds.
Otherwise, consider the case that partial deduction is performed on a non-
terminal abducible A. Since P is separable, there is a clause C; of the
form (6) such that I'; consists of abducibles. Then, put ' = E\ {A} UT}.
Since E is an explanation of O in P, F is an explanation of O in #M5F(P).
Also, PUEFE = O implies PU F = O, hence F' is an explanation of O in P.
By the construction of F, PU F |= E holds, therefore £ < F.

Moreover, if F is an explanation of O in 7M€ (P), #MSE(P) U F = O
holds. In this case, 7% (P) just reduces a deduction step between O and
F in P, hence PU F | O also holds. Since P U F is consistent, F' is an
explanation of O in P. O

Example 3.4 Let P = { 0 < a, a < b } where A = {a,b} and b is
terminal. Then o has the most specific explanation {b}, and ﬁ%‘f_%;a} (P) =
{04 b, a< b} has the same most specific explanation {b}. On the other
hand, let P ={0+<+ a, a<+ b, b+ a} with A= {a,b}, where neither a
nor b is terminal. Then, both {a} and {b} are the most specific explanations
of o. In this case, W%‘iEb;b}(P) ={o0<+ a, a<+ a, b+ a} has the most

specific explanation {a}, where {b} < {a} holds.

Thus 7% (P) approximates P in the sense that the residual program
does not necessarily preserve the most specific explanation E which is mini-
mal, but has an explanation F' more specific than F in the original program.
In particular, if a program is acyclic with respect to abducibles, the following
strong result holds.



Theorem 3.7 Let P be a separable abductive definite program acyclic wrt
abducibles. Then, for any observation O, E is a most specific explanation
of O in P iff E is a most specific explanation of O in 7™ (P).

Proof: ~ We first show that any most specific explanation £ of O in P
consists of terminal abducibles. If an abducible A € FE is not terminal, there
is a clause C; of the form (6) such that I'; consists of abducibles. Then,
put FF = E\ {A} UT;. In this case, F' is an explanation of O in P and
E < F holds. On the other hand, P is acyclic wrt abducibles, then F' £ F,
thereby EF < F. Since F is a most specific explanation, £ < F' implies
E C F. Then A € FE implies A € F, so A € I';, which contradicts the fact
that P is acyclic wrt abducibles. Therefore, any most specific explanation £
of O in P consists of terminal abducibles. Since 7M°F(P) preserves terminal
abducibles, the result follows. O

Note that when a program is not separable or contains integrity con-
straints, reserving terminal abducibles is not enough.

Example 3.5 Consider the non-separable program P = { 0 + a, a «
bAp, p<+ q} with A= {a,b}, where {a} is the most specific explanation
of 0. Then, reserving only the terminal abducible b, the residual program
W%f_b;;a}(P) ={ o+ bAp, a<+ bAp, p <+ q} has no explanation of
0. On the other hand, consider the program containing integrity constraints
P={o+a a<+ b < b} where A= {a,b} and b is terminal. Then
{a} is the most specific explanation of o in P, while the residual program

MSE (P)={o0+4b, a<+ b, < b} has no explanation of o.

Tr{o%a;a}

Next we consider a variant for the least specific explanations.
To compute the least specific explanations in abductive Horn programs,
we can simplify residual programs as follows. Abductive partial deduction for

LSE is defined as

TLSE(P) = P\ {Cy,...,Cy}, if Ais an abducible;
GAR )7 (P\{C}Hu{Cy,...,CL}, otherwise,

where C; and C7 are the same as Definition 3.1, and 7l5E(P) is defined as
before.

The above definition presents that when partial deduction is performed
on an abducible A, each clause C; having A in its head can be eliminated
in the residual program as far as the least specific explanations are con-
cerned. Such a clause elimination technique is called cut in [Ino92]. Then
the following results hold.

Lemma 3.8 Let P be an abductive Horn program. Then, £ < F and
E £ Fimply P=FE < F.

10



Proof: By definition, £ £ F iff E £ F or F < E. Since E < F by
assumption, we show that £ < F and F' < E imply P = F < F. By each
definition, it holds that PUF |= FE and PUE = F, whichimply P = F = E
and P = E = F. Therefore, P = E < F. O

Theorem 3.9 Let P be an abductive Horn program and O an observation.
Then, for any least specific explanation £ of O in P, there is an explanation
F of O in 75 (P) such that P |= F < E.

Proof: Let E be a least specific explanation of O in P. If partial deduction
is performed on non-abducible atoms, FLSE(P) reduces to normal partial
deduction and the result follows by Corollary 3.3. Otherwise, consider the
case that partial deduction is performed on an abducible A in (5) and any
clause (6) is eliminated. If P U E [= T';, elimination of (6) does not affect
the construction of the explanation E. Moreover, if P U E is consistent,
so is 79P(P) U E. Hence, F is also an explanation of O in 7/%%(P), and
the result holds. Else if PUE T, put FF = E\T;U{A}. In this case,
PUE = O implies 7“5F(P)UF = O. Also, the consistency of PUE implies
the consistency of 7“5F(P)UF. Thus, F is an explanation of O in 75 (P).
Moreover, PU E = O implies PU F = O, hence F is an explanation of O
in P. By the construction of F';, PU E = F holds, thereby F' < E. Since E
is least specific, F' £ E holds. Therefore, P = F' < E by Lemma 3.8. O

Example 3.6 Let P ={ 0+< a, a <+ b} where A= {a,b}. Then o has the
least specific explanation {a}, and ﬂfgsfa;a}(P) = { 0 + a } has the same
least specific explanation {a}. On the other hand, let P ={ o0+« a, a <+ }
where A = {a}. Then, both {a} and 0 (i.e., true) are the least specific
explanations of o. In this case, ﬁfffa;a}(P) = { 0 < a } has the least
specific explanation {a}, where P |= a < true holds.

Thus 75F(P) approximates P in the sense that for any least specific
explanation F in P, the residual program has a least specific explanation F
which is logically equivalent to E in P.

For an abductive definite program, the following result also holds.

Theorem 3.10 Let P be an abductive definite program and O an observa-
tion. Then any explanation F of O in 7% (P) is also an explanation of O
in P.

Proof: If F is an explanation of O in 7% (P), #¥(P) U F = O holds.
In this case, adding eliminated clauses C; to 7% (P) does not affect the
derivation of O from 75%(P) U F. Then, after such addition, 7/%F(P) is
just normal partial deduction on non-abducibles, hence P U F' = O also
holds. In an abductive definite program, the consistency of 7% (P)uU F
implies the consistency of P U F', hence the result follows. O

11



Note that 779P(P) may produce the least specific explanation which is
not least specific in P. Moreover, in the presence of integrity constraints a
produced explanation may not be an explanation in P.

Example 3.7 Let P = { 0 < a, 0o+ b, a < b} where A = {a,b}.
Then, ﬂfffa;a}(P) = {0+ a, o< b} has the least specific explanations
{a} and {b}, while {b} is not least specific in P. On the other hand, let
P={o+a, b<—a, < b, p< b} with A= {a,b}. Then, ﬂfpsfb;b}(P) =
{0+ a, < b, p<+ b} has the explanation {a} of o, while it is not an
explanation in P because P U {a} is inconsistent.

4 Partial Abduction

In this section, we provide a method of partial abduction by using abduc-
tive partial deduction presented in the preceding section. Partial abduction
optimizes abductive reasoning by specializing a program with respect to a
given observation, which is defined as follows.

Definition 4.1 Let P be an abductive logic program and O an observation.
Let us define

PASp = P,

PAioJr,le = U ( U ﬂ?O(—F;Bj}(PAiO,P))'
OeFGPAg,P B;el’

Then we say that any PAy, p (i > 0) is obtained by partial abduction.

In the above definition, Up, cr W?O(*F;Bj}(PAiO,P) means the result of
abductive partial deduction, which is performed iteratively for any atom B;
in I'. Then PAiJJg is defined as abductive partial deduction performed for
every clause from PA’& p containing O in the head.

Partial abduction is defined as an iterative application of abductive par-
tial deduction, hence the next result follows from Corollary 3.5.

Theorem 4.1 Let P be an abductive logic program and O an observation.
Then, O has an explanation F in P iff O has an explanation F in PAZb p.- O

Partial abduction optimizes abductive logic programs in the sense that
PAZO’ p reduces inference steps from an observation to explanations. In

particular, in a propositional program the iterative computation of PAa p
reaches the fixpoint PAp p = PAgTI% (denoted by PAo p), and the following
result holds.®

A clause of the form A < B A B AT in a program is identified with A + B AT, so
that infinite unfolding like p <— ¢ Ap, p < qA qAp,... never happens.

12



Theorem 4.2 Let P be an abductive Horn program and O an observation.
Then, O has an explanation F in P iff O <- E is in PAp p and PApop UFE
is consistent.

Proof:  Partial abduction reduces intermediate non-abducible atoms be-
tween the observation and an explanation, then PUE = O iff O <— E is in
PAp p. Also, when P U E is consistent, PAp p U E is consistent, and vice
versa. Hence the result follows. O

Example 4.1 Let P be the program:

wet-shoes < wet-grass,
wet-grass <— rained,

wet-grass <— sprinkler-on,

where A = { wet-grass, rained, sprinkler-on }. Then, given the observation
O = wet-shoes, PAo,p includes

wet-shoes < wet-grass,
wet-shoes <+ rained,

wet-shoes <+  sprinkler-on.

In non-Horn abductive logic programs, an explanation E of O in P does
not necessarily imply the existence of O <- E in PAo p.

Example 4.2 Let P = { 0 < notp, p < nota } where A = {a}. Then,
{a} is the explanation of o, but PAp p = P does not contain o < a.

If we use 79F or 79F instead of 74 in Definition 4.1, we can define cor-

responding partial abduction in abductive Horn programs. Partial abduction
is also realized by goal-oriented partial evaluation like [LS91] by translating
abductive partial deduction into normal partial deduction by Corollary 3.4.

5 Discussion

Partial deduction is usually used for program optimization in logic program-
ming. However, in Section 3 we argued that due to the nature of abductive
reasoning, special attention should be paid for applying partial deduction to
abductive logic programs. The point is that abduction is a form of causal
reasoning between causes and effects, and normal partial deduction often
loses such relationships in a program. This observation also suggests that
we should be careful to use normal partial deduction where causality plays
an important role in the meaning of a program. For instance, let us consider
the program:
pass_exam <— study_hard,

study_hard < bad_score.
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If we perform partial deduction in the first clause of the program, it produces

pass_exam < bad_score,

study_hard < bad_score,

in which the resultant clause is somewhat meaningless if we read it as a
declarative sentence. Moreover, since the causal knowledge “if one studies
hard, she/he passes the exam” is lost, introducing the fact study_hard never
implies pass_exam in the residual program. In such situations, abductive
partial deduction is also useful to preserve causalities by reserving appropri-
ate intermediate knowledge.

Partial deduction is also discussed in the context of abductive reasoning
in [Hop92]. In the paper, Hoppe argues structural similarities between par-
tial deduction and Poole’s Theorist procedure. According to his analysis,
partial deduction is regarded as a special case of Theorist, and incremental
nonmonotonic partial deduction is required to realize Theorist on a partial
evaluator. However, he never considers the effect of partial deduction in
abductive reasoning nor discusses the issue of explanation preservation in
general.

To optimize abductive reasoning, Reiter and de Kleer [RK87] propose
the clause management system (CMS), which generalizes de Kleer’s ATMS
and realizes efficient search for abductive reasoning in propositional theories.
In the CMS, given a theory X, every clause C' (prime implicate) satisfying
(a) X | C and (b) X £ C’ for any proper subset C’ of C| is stored. In
contrast to ours, the CMS provides a global optimization technique which is
different from our partial deduction technique. Moreover, due to the global
nature, the CMS is more likely to produce an exponentially huge number of
prime implicates when used as a compilation technique.

Poole [P0093] introduces a mechanism to compute partial explanations,
which is similar to our partial abduction. He computes partial explanations
by an SLD-like top-down procedure together with the best-first strategy.
However, the best explanations computed by his procedure are based on
probabilities and are different from the most specific or least specific expla-
nations in this paper. Furthermore, it is restricted to acyclic Horn programs
having no clause with an abducible head.

6 Summary

This paper investigated the effect of partial deduction in abductive reason-
ing. We first showed that normal partial deduction does not preserve the
meaning of abductive logic programs. Then, we introduced abductive partial
deduction which preserves belief sets and (best) explanations in abductive
logic programs. We also presented some variants of abductive partial de-
duction and introduced partial abduction to optimize abductive reasoning
in logic programming.
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The usefulness of abductive reasoning is now well-recognized in various
AT problems, and abductive logic programming is a promising technique to
realize it. Then optimization of abductive logic programs is an important
research issue, and the techniques presented in this paper contribute as a
step towards the goal. The results of this paper are also directly applicable
to abductive logic programs containing classical negation. Future research
includes the treatment of programs containing variables or disjunctions.
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