
Transforming Abductive Logic Programs to

Disjunctive Programs∗

Katsumi Inoue
Department of Information and Computer Sciences

Toyohashi University of Technology
Tempaku-Cho, Toyohashi 441, Japan

inoue@tutics.tut.ac.jp

Chiaki Sakama
ASTEM Research Institute of Kyoto

17 Chudoji Minami-machi, Shimogyo, Kyoto 600, Japan
sakama@astem.or.jp

Abstract

A new fixpoint semantics for abductive logic programs is provided, in which
the generalized stable models of an abductive program are characterized
as the fixpoint of a disjunctive program obtained by a suitable program
transformation. In the transformation, both negative hypotheses through
negation as failure and positive hypotheses from the abducibles are dealt
with uniformly. This characterization allows us to have a parallel bottom-
up model generation procedure for computing abductive explanations from
arbitrary (range-restricted and function-free) general, extended, and dis-
junctive programs with integrity constraints.

1 Introduction

Abduction, an inference to explanation, has recently been recognized as a
very important form of reasoning for logic programming as well as various
AI problems. In [EK89, KM90, Gel90, Ino91], abduction is expressed as an

∗In Proceedings of the 10th International Conference on Logic Programming (ICLP’93),
MIT Press, pp. 335-353, 1993.

1

extension of logic programming. Eshghi and Kowalski [EK89] give an abduc-
tive interpretation of negation as failure [Cla78] in the class of general logic
programs, and show a 1-1 correspondence between the stable models [GL88]
of a general logic program and the extensions of its associated abductive
framework. Their approach is extended by [KM90, Dun91]. Kakas and
Mancarella [KM90] propose a framework of abductive logic programming,
which is defined as a triple 〈P,Γ, I 〉, where P is a general logic program,
Γ is a set of abducible predicates, and I is a set of integrity constraints.
Then, a generalized stable model of 〈P,Γ, I 〉 is defined as a stable model of
P ∪E which satisfies I, where E is any set of ground atoms with predicates
from Γ. On the other hand, Gelfond [Gel90] proposes an abductive frame-
work within extended disjunctive programs [GL91] that allow disjunctions in
heads and classical negation along with negation as failure. Further, Inoue
[Ino91] proposes a more general framework for hypothetical reasoning, called
a knowledge system, by allowing any extended logic program as candidate
hypotheses Γ, and shows that every knowledge system can be transformed
into a semantically equivalent abductive logic programming framework.

To compute stable models of a general logic program or answer sets
[GL91] of an extended disjunctive program, Inoue et al [IKH92] have shown
a constructive definition of stable models and answer sets, and provided a
bottom-up procedure based on model generation techniques [MB88, FH91].
Inoue and Sakama [IS92] have proved that this procedure has a formal fix-
point semantics for general and extended (disjunctive) logic programs. The
basic idea of this technique is to transform a program into a semantically
equivalent positive disjunctive program not containing negation as failure.

In this paper, we generalize Inoue et al’s program transformation tech-
nique for non-abductive programs to deal with abductive frameworks. Namely,
we transform an abductive logic programming framework into a positive
disjunctive program not containing negation as failure, and show that the
generalized stable models of an abductive framework can be characterized
by the fixpoint closure of the transformed program.

This paper is organized as follows. Section 2 defines a framework for
abductive logic programming. In Section 3, we successively present fixpoint
theories for positive disjunctive programs, general logic programs and ab-
ductive logic programming. In Section 4, we extend the results to extended
disjunctive programs with abducibles. Section 5 presents a model genera-
tion procedure for computing generalized stable models. Some comparisons
between our fixpoint theory and previous work are discussed in Section 6.

2

2 Model Theory for Abductive Logic Programs

There are several definitions of abduction [PGA87, EK89, KM90, Bry90,
Gel90, Ino91, CDT91, Ino92]. The semantics of abduction we use here is
based on the generalized stable models defined by Kakas and Mancarella
[KM90]. As stated in Section 1, their abductive framework is given by a
triple 〈P,Γ, I 〉, where P is a general logic program, Γ is a set of abducible
predicates, and I is a set of integrity constraints. Compared with abduction
based on first-order logic by [PGA87, Ino92], Kakas and Mancarella define
a program P not as first-order formulas but as a general logic program with
negation as failure. This definition covers a more general class of programs
than Console et al’s object-level abduction [CDT91] that is defined for hi-
erarchical logic programs. Two different definitions by Gelfond [Gel90] and
Inoue [Ino91] are more general than that by [KM90] in the sense that they
allow more extended classes of programs for P and Γ. We will revisit such
an extension in Section 4.

We define an abductive general logic program as a pair 〈P,Γ 〉, in a way
slightly different from Kakas and Mancarella’s framework. Instead of sep-
arating integrity constraints I from a program P , we include them in a
program and do not distinguish them from other clauses. The main reason
for this treatment is that we would like to check the consistency not by an
extra mechanism for integrity checking but within closure computation de-
fined in the subsequent sections. For this purpose, we first give the syntax
and stable model semantics of general logic programs.

Definition 2.1 A general logic program is a finite set of clauses of the form:

H ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn (1)

or
← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn , (2)

where n ≥ m ≥ 0, and H and Bi’s are atoms. The left-hand (right-hand)
side of← is called the head (body) of the clause. Each clause of the form (2)
is called an integrity constraint. An integrity constraint is called a negative
clause if m = n.

A general logic program not containing not is called a Horn program. A
Horn program not containing negative clauses is called a definite program.

In Definition 2.1, we allow in a program integrity constraints as clauses
with empty heads, which are not explicitly defined in [GL88]. While [KM90]

3

defines integrity constraints as first-order formulas separated from programs,
every integrity constraint in the form of a first-order formula F can be
first characterized as a clause without a head, ← not F , then translated
into clauses using the transformation of [LT84]. For instance, an integrity
constraint p ⊃ q can be expressed by ← p ∧ not q.

In the semantics of a general logic program, a clause containing variables
stands for the possibly infinite set of its ground instances obtained by in-
stantiating every variable by the elements of the Herbrand universe of the
program in every possible way. An interpretation of a program is defined as
a subset of the Herbrand base HB of the program. An interpretation I sat-
isfies a ground Horn clause H ← B1 ∧ . . .∧Bm if {B1, . . . , Bm} ⊆ I implies
H ∈ I. Especially, I satisfies a ground negative clause ← B1 ∧ . . . ∧ Bm
if {B1, . . . , Bm} 6⊆ I. For a Horn program P , the smallest interpretation
satisfying every ground clause from P is called the least model of P .

Definition 2.2 Let P be a general logic program, and I an interpretation.
The reduct P I of P by I is defined as follows: A clause H ← B1 ∧ . . . ∧Bm
(resp. ← B1 ∧ . . .∧Bm) is in P I if there is a ground clause H ← B1 ∧ . . .∧
Bm∧notBm+1∧. . .∧notBn (resp. ← B1∧. . .∧Bm∧notBm+1∧. . .∧notBn)
from P such that {Bm+1, . . . , Bn} ∩ I = ∅.

Then, I is a stable model [GL88] of P if I is the least model of P I .
We say that a general logic program P is consistent if it has a stable

model; otherwise, it is called inconsistent.

Now, we define abductive general logic programs and their semantics.

Definition 2.3 An abductive general logic program is a pair 〈P,Γ 〉, where
P is a general logic program, and Γ is a set of predicate symbols from P
called the abducible predicates.1 The set of all ground atoms AΓ (⊆ HB)
having abducible predicates from Γ is called the abducibles.

When P is a Horn program, 〈P,Γ 〉 is called an abductive Horn program.

Definition 2.4 Let 〈P,Γ 〉 be an abductive general logic program and E a
subset of AΓ. An interpretation IE is a generalized stable model of 〈P,Γ 〉
if it is a stable model of the general logic program P ∪ E 2 and satisfies
E = IE ∩ AΓ. A generalized stable model IE is minimal if no generalized
stable model IE′ satisfies that E′ ⊂ E.

1This definition is an extension of that by Kakas and Mancarella [KM90] to allow
any general logic program (with integrity constraints) in P , while [KM90] requires that
abducible predicates do not appear in heads of clauses.

2For each abducible A ∈ AΓ, we identify the atom A with the clause A← in E.

4

Each generalized stable model in the above definition reduces to a stable
model of P when Γ = ∅. In Definition 2.4, the condition E = IE ∩ AΓ is
necessary since an abducible appearing in the head of a ground clause may
become true when other abducibles from E are true (see Example 2.1 below).
In this way, each generalized stable model IE can be uniquely associated with
its “generating” abducibles E. A similar extension has been proposed by
Preist and Eshghi [PE92].

Definition 2.5 Let 〈P,Γ 〉 be an abductive general logic program and O
an atom. A set E ⊆ AΓ is an explanation of O (with respect to 〈P,Γ 〉) if
there is a generalized stable model IE which satisfies O.

An explanation E of O is minimal if no E′ ⊂ E is an explanation of O.

Example 2.1 Consider an abductive Horn program 〈P,Γ 〉 where

P = { sore(leg)← broken(leg), broken(leg)← broken(tibia) }

and Γ = {broken}. Let O = sore(leg) be an observation. Then, E =
{broken(leg)} is a minimal explanation ofO. While E′ = {broken(tibia), broken(leg)}
is a (non-minimal) explanation of O, E′′ = {broken(tibia)} is not an ex-
planation of O, since broken(tibia) causes broken(leg) so that there is no
generalized stable model IE′′ satisfying E′′ = IE′′ ∩AΓ. Thus, the definition
of (minimal) explanations is purely model theoretic. In this case, the unique
minimal explanation E reflects the fact that the evidence of broken(leg) is
more likely than that of broken(tibia).

In the rest of this paper, we assume that an observation O is a non-
abducible ground atom. This condition is not restrictive for the following
reasons. First, if O is an abducible, all of its explanations trivially contain
O. Second, if O(x) contains a tuple of free variables x, then we can introduce
a new proposition O and add a clause O ← O(x) to the program P so that O
is treated as an observation. Third, we can ask the system why some atoms
O1, . . . , Om are observed and other atoms Om+1, . . . , On are not observed,
by introducing a clause O ← O1 ∧ . . . ∧ Om ∧ notOm+1 ∧ . . . ∧ notOn and
computing explanations of O.

Lemma 2.1 Let 〈P,Γ 〉 be an abductive general logic program, E a subset
of AΓ, and O an atom. Then, E is a minimal explanation of O with respect
to 〈P,Γ 〉 iff IE is a minimal generalized stable model of 〈P∪{ ← notO}, Γ 〉.

Proof: First, observe that the addition of ← notO to P imposes the
integrity constraint that O should be derived. Then,

5

E is a minimal explanation of O with respect to 〈P,Γ 〉
⇔ no E′ ⊂ E is an explanation of O with respect to 〈P,Γ 〉
⇔ no generalized stable model IE′ of 〈P,Γ 〉 in which O is true satisfies
E′ ⊂ E
⇔ no generalized stable model IE′ of 〈P ∪ { ← notO}, Γ 〉 satisfies E′ ⊂ E
⇔ IE is a minimal generalized stable model of 〈P ∪ { ← notO}, Γ 〉. 2

Example 2.2 Consider an abductive general logic program 〈P,Γ 〉 where

P = { p← r ∧ b ∧ not q , q ← a , r ← , ← not p }

and Γ = {a, b}. The unique generalized stable model of 〈P,Γ 〉 is IE =
{r, p, b}. If we regard ← not p as an observation, E = IE ∩AΓ = {b} is the
unique explanation of p. Note here that we cannot add a to E because if
we would abduce E′ = {a, b}, q would block to derive p and the integrity
constraint could not be satisfied. Hence, abduction is nonmonotonic relative
to the addition of abducibles.

3 Fixpoint Theory for Abductive Logic Programs

This section presents a fixpoint semantics for abductive general logic pro-
grams. First, we introduce (i) a fixpoint semantics for positive disjunctive
programs [IS92], then (ii) a fixpoint semantics for general logic programs
[IS92] using a transformation to positive disjunctive programs by [IKH92].
Next, (iii) a fixpoint semantics for abductive Horn programs is given us-
ing another program transformation, then finally it is extended to (iv) a
fixpoint semantics for abductive general logic programs by combining the
transformations of (ii) and (iii).

3.1 Fixpoint Semantics for Positive Disjunctive Programs

A positive disjunctive program is a finite set of clauses of the form:

H1 ∨ . . . ∨Hl ← B1 ∧ . . . ∧Bm (l,m ≥ 0) (3)

where Hi’s and Bj ’s are atoms. An interpretation I satisfies a ground clause
of the form (3) if {B1, . . . , Bm} ⊆ I implies Hi ∈ I for some 1 ≤ i ≤ l.
Then, the semantics of a positive disjunctive program P is given by its
minimal models [Min82] each of which is defined by a minimal interpretation
satisfying all ground clauses from P .

6

To characterize the nondeterministic behavior of a disjunctive program,
Inoue and Sakama [IS92] have introduced an ordering and a closure operator

over a lattice of the sets of Herbrand interpretations 22HB as follows.

Definition 3.1 Let I and J be sets of interpretations. Then, I v J iff I = J
or ∀J ∈ J \ I, ∃I ∈ I \ J such that I ⊂ J .

v is a partial order and each element in 22HB makes a complete lattice
under the ordering v with the top element ∅ and the bottom element 2HB.

Definition 3.2 Let P be a positive disjunctive program and I be a set of
interpretations. Then a mapping TP : 22HB → 22HB is defined by

TP (I) =
⋃
I∈I

TP (I) ,

where the mapping TP : 2HB → 22HB is defined as follows:

TP (I) =

∅ , if {B1, . . . , Bm} ⊆ I for some ground negative clause
← B1 ∧ . . . ∧Bm from P ;

{ J | for each ground clause Ci : H i
1 ∨ . . . ∨H i

li
← Bi

1 ∧ . . . ∧Bi
mi

from P such that {Bi
1, . . . , B

i
mi} ⊆ I

and {H i
1, . . . ,H

i
li
} ∩ I = ∅,

J = I ∪
⋃
Ci {H

i
j} (1 ≤ j ≤ li) } , otherwise .

Especially, TP (∅) = ∅.

Definition 3.2 says that, if an interpretation I does not satisfy a ground
negative clause then TP (I) = ∅, else TP (I) contains every interpretation
obtained from I by adding each single disjunct from every ground clause
that is not satisfied by I.

Definition 3.3 The ordinal powers of TP are defined as follows.

TP ↑ 0 = {∅}, TP ↑ n+1 = TP (TP ↑ n), TP ↑ ω = lub{TP ↑ n | n < ω},

where n is a successor ordinal and ω is a limit ordinal.

Example 3.1 Let P = { p ∨ q ← r, s ← r, r ← , ← q ∧ s }.
Then, we get TP ↑ 1 = {{r}}, TP ↑ 2 = {{r, s, p}, {r, s, q}}, and TP ↑ 3 =
{{r, s, p}} = TP ↑ ω.

7

Although the mapping TP is not monotonic, powers of TP by Defini-
tion 3.3 are always increasing (i.e., TP ↑ n v TP ↑ n+ 1).

Theorem 3.1 [IS92]
(a) TP ↑ ω is a fixpoint. We call it a disjunctive fixpoint of P .
(b) Each element in TP ↑ ω is a model of P .
(c) Let MMP be the set of all minimal models of P . Then, MMP =
min(TP ↑ ω), where min(I) = { I ∈ I |6 ∃ J ∈ I such that J ⊂ I } .
(d) A positive disjunctive program P is inconsistent iff TP ↑ ω = ∅.
(e) If P is a definite program, TP ↑ ω contains a unique element I which is
the least model of P .

Theorem 3.1 (c) characterizes the minimal model semantics [Min82] of a
positive disjunctive program. On the other hand, (d) can be used as a test
for the consistency of a positive disjunctive program. Furthermore, (e) says
that, for a definite program, our fixpoint construction reduces to van Emden
and Kowalski’s fixpoint semantics [vEK76].

3.2 Fixpoint Semantics for General Logic Programs

To characterize the stable models of a general logic program, Inoue et al have
proposed a program transformation which transforms a general logic pro-
gram into a semantically equivalent not-free disjunctive program [IKH92].

Definition 3.4 [IKH92] Let P be a general logic program and HB be its
Herbrand base. Then P κ is the program obtained as follows.

1. For each clause H ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn in P ,

(H∧¬KBm+1∧. . .∧¬KBn)∨KBm+1∨. . .∨KBn ← B1∧. . .∧Bm (4)

is in P κ. Especially, each integrity constraint becomes KBm+1 ∨ . . . ∨
KBn ← B1 ∧ . . . ∧Bm.

2. For each atom B in HB, the clause ← ¬KB ∧B is in P κ.

Here, KB (resp. ¬KB) is a new atom which denotes B is believed (resp.
disbelieved). In the transformation (i), each notBi is rewritten in ¬KBi and
shifted to the head of the clause. Moreover, since the head H becomes true
when each ¬KBi in the body is true, the condition ¬KBm+1 ∧ . . .∧¬KBn is
added to H. The constraint (ii) says that each atom B cannot be true and
disbelieved at the same time. An interpretation Iκ is now defined as a subset

8

of the new Herbrand base: HBκ = HB∪{KB | B ∈ HB}∪{¬KB | B ∈ HB}.
An atom in HBκ is called objective if it is in HB, and the set of objective
atoms in an interpretation Iκ is denoted as obj(Iκ).

In [IKH92], it is shown that the stable models of a program can be pro-
duced constructively from the transformed program. Here, we characterize
the result using the disjunctive fixpoint of the transformed program. For
this purpose, we slightly modify a mapping presented in Definition 3.2 to
allow a disjunction of conjunctions of atoms in the head of a clause. For a
conjunction of atoms F = H1∧ . . .∧Hk, we denote the set of its conjuncts as
conj(F) = {H1, . . . ,Hk}. Let P κ be a program, and Iκ an interpretation.

A mapping TPκ : 2HB
κ → 22HB

κ

is now defined as: If {B1, . . . , Bm} ⊆ Iκ for
some ground negative clause ← B1 ∧ . . . ∧Bm from P κ, then TPκ(Iκ) = ∅;
Otherwise, TPκ(Iκ) = { Jκ | Jκ = Iκ ∪

⋃
Ci∈V (Pκ,Iκ) conj(F

i
j) (1 ≤ j ≤

li) }, where V (P κ, Iκ) is the set of ground clauses Ci: F i1 ∨ . . . ∨ F ili ←
Bi

1 ∧ . . . ∧ Bi
mi from P κ such that {Bi

1, . . . , B
i
mi} ⊆ Iκ and conj(F ij) 6⊆ Iκ

for any j = 1, . . . , li. The mapping TPκ and its disjunctive fixpoint are also
defined in the same way as in Section 3.1 and those properties presented
there still hold.

Definition 3.5 An interpretation Iκ is canonical if for each ground atom
A, KA ∈ Iκ implies A ∈ Iκ. For a set Iκ of interpretations, we write:
objc(I

κ) = { obj(Iκ) | Iκ ∈ Iκ and Iκ is canonical }.

The following theorem due to [IS92] presents the fixpoint characteriza-
tion of the stable model semantics for general logic programs.

Theorem 3.2 Let P be a general logic program, P κ its transformed form,
and ST P the set of all stable models of P . Then, ST P = objc(TPκ ↑ ω).
Especially, P is inconsistent iff objc(TPκ ↑ ω) = ∅.

Example 3.2 Let P = { p ← not q, q ← not p, r ← q, r ← not r }.
Then, P κ is given as follows:

{ (p ∧ ¬Kq) ∨ Kq ← , (q ∧ ¬Kp) ∨ Kp← , r ← q, (r ∧ ¬Kr) ∨ Kr ← }
∪ { ← ¬KB ∧B | B ∈ {p, q, r}} .

Now, TPκ ↑ ω = { {p,¬Kq,Kp,Kr}, {Kq, q,¬Kp,Kr, r}, {Kq,Kp,Kr} }, in
which only the second element is canonical. Hence, objc(TPκ ↑ ω) =
{{q, r}}, and {q, r} is the unique stable model of P .

9

3.3 Fixpoint Semantics for Abductive Horn Programs

The basic idea behind the transformation presented in the previous subsec-
tion is that we hypothesize the epistemic statement about an atom B to
evaluate the negation-as-failure formula notB. Namely, we assume that B
should not (or should) hold at the fixpoint. The correctness of the negative
hypothesis ¬KB is checked through the integrity constraint ← ¬KB ∧ B
during the fixpoint construction, while for the positive hypothesis KB, the
integrity checking is carried out by the canonical constraint that all the
“assumed” literals are actually “derived” at the fixpoint.

Now, we move on to abduction. Each abducible can also be treated as
an epistemic hypothesis as in the previous transformation. Thus, we can
assume that each abducible is either true or false at the fixpoint. The only
difference is that for the positive hypothesis KA for each abducible A, we
do not need the canonical constraint. We first present a transformation of
an abductive Horn program.

Definition 3.6 Let 〈P,Γ 〉 be an abductive Horn program. Then, P εΓ is the
program obtained as follows.

1. For each Horn clause in P : H ← B1∧. . .∧Bm∧A1∧. . .∧An (m,n ≥ 0),
where Bi’s are non-abducibles and Aj ’s are abducibles,

(H ∧ KA1 ∧ . . . ∧ KAn) ∨ ¬KA1 ∨ . . . ∨ ¬KAn ← B1 ∧ . . . ∧Bm (5)

is in P εΓ. Especially, each negative clause becomes ¬KA1∨. . .∨¬KAn ←
B1 ∧ . . . ∧Bm.

2. For each abducible A in AΓ, P εΓ contains the following two clauses:

← ¬KA ∧A , (6)

A ← KA . (7)

We can see that the clause (5) transformed from an abductive Horn pro-
gram and the clause (4) transformed from a general logic program are dual
in the sense that an abduced atom A is dealt with as a positive hypothesis
KA, while a negation-as-failure formula notB is dealt with as a negative
hypothesis ¬KB. Here, however, we have the additional clause (7) for each
abducible A. Since this clause derives A whenever an interpretation contains
KA, it makes every interpretation in TP εΓ

↑ ω satisfy the canonical condition

10

defined in Definition 3.5. Hence, for each Horn clause in P , we can replace
the transformed clause (5) in P εΓ with the clause

(H ∧A1 ∧ . . . ∧An) ∨ ¬KA1 ∨ . . . ∨ ¬KAn ← B1 ∧ . . . ∧Bm (8)

and omit each clause (7) for each abducible A in AΓ. We denote as P κΓ
the program obtained from P by this alternative transformation. Since
this change does not affect the result of the fixpoint of P εΓ as far as objective
atoms are concerned, we can identify P κΓ with P εΓ. In this way, each abduced
atom can be added to an interpretation without imposing the condition that
it should be derived.

Lemma 3.3 Let 〈P,Γ 〉 be an abductive Horn program.
(a) For any Iκ ∈ TPκΓ

↑ ω, obj(Iκ) is a generalized stable model of 〈P,Γ 〉.
(b) For any generalized stable model IE of 〈P,Γ 〉, there is a generalized
stable model IE′ of 〈P,Γ 〉 such that E′ ⊆ E, IE′ \ E′ = IE \ E, and
IE′ = obj(Iκ) for some Iκ ∈ TPκΓ

↑ ω.
(c) If E ⊆ AΓ is an explanation of an atom O, then there is an explanation
E′ of O such that E′ ⊆ E and IE′ = obj(Iκ) for some Iκ ∈ TPκΓ

↑ ω.

Proof: (a) Let E = obj(Iκ) ∩ AΓ, and P ′ be the definite program ob-
tained from P by removing every negative clause. By Theorem 3.1 (e),
TP ′∪E ↑ ω contains the unique element I. Then, for each ground clause of
the form H ← B1 ∧ . . . ∧Bm ∧A1 ∧ . . . ∧An (Aj ’s are abducibles) from P ′,
if {B1, . . . , Bm} ⊆ I then either {A1, . . . , An, H} ⊆ I or ∃j (1 ≤ j ≤ n)
such that Aj 6∈ I, and for the corresponding clause of the form (8), if
{B1, . . . , Bm} ⊆ I then either {A1, . . . , An, H} ⊆ Iκ or ∃j (1 ≤ j ≤ n)
such that ¬KAj ∈ Iκ. Hence, I = obj(Iκ). Since I is the least model of
P ′ ∪ E and P ∪ E is a consistent Horn program, I is also the stable model
of P ∪ E. By definition, I is a generalized stable model of 〈P,Γ 〉.

(b) For any atomH i ∈ IE\E, there is a ground clause Ci: H i ← Bi
1∧. . .∧

Bi
mi∧A

i
1∧ . . .∧Aini (Aij ’s are abducibles) from P such that {Bi

1, . . . , B
i
mi} ⊆

IE \E and {Ai1, . . . , Aini} ⊆ E. Let E′ =
⋃
Hi∈IE\E {A

i
1, . . . , A

i
ni}. Since for

the clause Ci, there is the corresponding clause (H i ∧ Ai1 ∧ . . . ∧ Aini) ∨
¬KAi1 ∨ . . . ∨ ¬KAini ← Bi

1 ∧ . . . ∧ Bi
mi is in P κΓ , if {Bi

1, . . . , B
i
mi} ⊆ J for

some J ∈ TPκΓ
↑ α and some ordinal α, then there exists J ′ ∈ TPκΓ

↑ α + 1

such that J ∪ {Hi, A
i
1, . . . , A

i
ni} ⊆ J ′. Since {Hi, A

i
1, . . . , A

i
ni} ⊆ IE and IE

is a stable model of P ∪E, J ′ satisfies each negative clause in P κΓ and is not
pruned away. Hence, there exists Iκ ∈ TPκΓ

↑ ω such that E′ ⊆ Iκ. By (a),
obj(Iκ) is a generalized stable model of 〈P,Γ 〉. It follows immediately that
E′ ⊆ E, IE′ \ E′ = IE \ E, and IE′ = obj(Iκ).

11

(c) If E is an explanation of O, then there is a generalized stable model
IE of 〈P,Γ 〉 satisfying O. By (b), there is a generalized stable model IE′

of 〈P,Γ 〉 such that E′ ⊆ E, IE′ \ E′ = IE \ E, and IE′ = obj(Iκ) for some
Iκ ∈ TPκΓ

↑ ω. Since O is in IE \ E, it is also in IE′ \ E′. Hence, E′ is an
explanation of O. 2

3.4 Fixpoint Semantics for Abductive General Logic Pro-
grams

Now, we show a transformation of abductive general logic programs by
combining the two transformations shown in Sections 3.2 and 3.3. Each
negation-as-failure formula notB for a non-abducible B is translated in the
same way as Definition 3.4: it is split into ¬KB and KB. On the other
hand, when a negation-as-failure formula notA mentions an abducible A, it
should be split into ¬KA and A. This is because for each abducible A, we
can deal with it as if the axiom (7) A← KA is present.

Definition 3.7 Let 〈P,Γ 〉 be an abductive general logic program. Then,
P κΓ is the program obtained as follows.

1. For each clause in P : H ← B1 ∧ . . .∧Bm ∧A1 ∧ . . .∧An ∧notBm+1 ∧
. . . ∧ notBs ∧ notAn+1 ∧ . . . ∧ notAt, where s ≥ m ≥ 0, t ≥ n ≥ 0,
Bj ’s are non-abducibles, and Ak’s are abducibles,

(H ∧
n∧
i=1

Ai ∧
s∧

j=m+1

¬KBj ∧
t∧

k=n+1

¬KAk)

∨
n∨
i=1

¬KAi ∨
s∨

j=m+1

KBj ∨
t∨

k=n+1

Ak ← B1 ∧ . . . ∧ Bm (9)

is in P κΓ . Especially, each integrity constraint is transformed to:

¬KA1∨. . .∨¬KAn∨KBm+1∨. . .∨KBs∨An+1∨. . .∨At ← B1∧. . .∧Bm .

2. For each atom H in HB, the clause ← ¬KH ∧ H is in P κΓ .

Notice that a transformed program P κΓ in Definition 3.7 reduces to the
program P κ in Section 3.2 when Γ is empty, and reduces to the program P κΓ
in Section 3.3 when P is a Horn program.

Lemma 3.4 Let 〈P,Γ 〉 be an abductive general logic program, and E a
subset of AΓ. Then, IE is a generalized stable model of 〈P,Γ 〉 iff IE is a
generalized stable model of 〈P IE ,Γ 〉.

12

Proof: IE is a generalized stable model of 〈P,Γ 〉
⇔ IE is a stable model of P ∪ E and E = IE ∩ AΓ

⇔ IE is the least (and stable) model of P IE ∪ EIE and E = IE ∩ AΓ

⇔ IE is a generalized stable model of 〈P IE ,Γ 〉 (because EIE = E). 2

Lemma 3.5 Let 〈P,Γ 〉 be an abductive general logic program.
(a) For any I ∈ objc(TPκΓ

↑ ω), I is a generalized stable model of 〈P,Γ 〉.
(b) For any generalized stable model IE of 〈P,Γ 〉, a generalized stable model
IE′ of 〈P,Γ 〉 is in objc(TPκΓ

↑ ω) such that E′ ⊆ E and IE′ \ E′ = IE \ E.
(c) If E ⊆ AΓ is an explanation of an atom O, then there is an explanation
E′ of O such that E′ ⊆ E and IE′ ∈ objc(TPκΓ

↑ ω).

Proof: (a) Let Iκ ∈ TPκΓ
↑ ω such that Iκ is canonical, and IE = obj(Iκ).

For each ground clause of the form (9) from P κΓ , if {B1, . . . , Bm} ⊆ IE \ E,
then either (i)H ∈ IE , {A1, . . . , An} ⊆ E and {¬KBm+1, . . . ,¬KBs,¬KAn+1, . . . ,¬KAt} ⊆
Iκ, (ii) ∃i (1 ≤ i ≤ n) such that ¬KAi ∈ Iκ, (iii) ∃j (m + 1 ≤ j ≤ s) such
that KBj ∈ Iκ, or (iv) ∃k (n + 1 ≤ k ≤ t) such that Ak ∈ E. Now,
consider the abductive Horn program 〈P IE ,Γ 〉, and let Jκ ∈ T(P IE)κΓ

↑ ω.

For each ground clause of the form (9) from P κΓ , if (iii′) KBj 6∈ Iκ (then
¬KBj ∈ Iκ and Bj 6∈ IE \ E since Iκ ∈ TPκΓ

↑ ω) for any j = m + 1, . . . , s
and (iv′) Ak 6∈ E for any k = n+1, . . . , t, then there is a ground clause of the
form (8) from (P IE)κΓ, and it holds that, if {B1, . . . , Bm} ⊆ Jκ then either
(i′) {H,A1, . . . , An} ⊆ Jκ or (ii′) ∃i (1 ≤ i ≤ n) such that ¬KAi ∈ Jκ. On
the other hand, if (iii′′) KBj ∈ Iκ (then Bj ∈ IE \ E since Iκ is canonical)
for some j (m + 1 ≤ j ≤ s) or (iv′′) Ak ∈ E for some k (n + 1 ≤ k ≤ t),
then no corresponding clause exists in (P IE)κΓ. Hence, there exists a Jκ sat-
isfying obj(Jκ) = IE . Then, IE is a generalized stable model of 〈P IE ,Γ 〉 by
Lemma 3.3 (a), and is a generalized stable model of 〈P,Γ 〉 by Lemma 3.4.

Part (b), (c) can be proved in a similar way to Lemma 3.3 (b), (c). 2

The next theorem characterizes the generalized stable model seman-
tics of an abductive general logic program and the minimal explanations
of an observation in terms of the disjunctive fixpoints of the transformed
programs. In the following, when Iκ is a set of interpretations, we write:
minΓ(Iκ) = { IE ∈ Iκ |6 ∃IE′ ∈ Iκ such that E′ ⊂ E } .

Theorem 3.6 Let 〈P,Γ 〉 be an abductive general logic program.
(a) Let min-GST 〈P,Γ 〉 be the set of all minimal generalized stable models of
〈P,Γ 〉. Then, min-GST 〈P,Γ 〉 = minΓ(objc(TPκΓ

↑ ω)) .
(b) Let E be a subset of AΓ, and O an atom. Then, E is a minimal expla-
nation of O with respect to 〈P,Γ 〉 iff IE ∈ minΓ(objc(T(P∪{←notO})κΓ ↑ ω)).

13

Proof: (a) By Lemma 3.5 (b), it follows immediately that min-GST 〈P,Γ 〉 ⊆
objc(TPκΓ

↑ ω), and hence min-GST 〈P,Γ 〉 ⊆ minΓ(objc(TPκΓ
↑ ω)) holds.

On the other hand, by Lemma 3.5 (a), every IE ∈ objc(TPκΓ
↑ ω) is a

generalized stable model of 〈P,Γ 〉. If IE ∈ minΓ(objc(TPκΓ
↑ ω)) is not in

min-GST 〈P,Γ 〉, then ∃IE′ ∈ min-GST 〈P,Γ 〉 such that E′ ⊂ E. However, by
the above discussion, IE′ ∈ minΓ(objc(TPκΓ

↑ ω)), a contradiction.
(b) By Lemma 3.5 (c), for every minimal explanation E of O, there

is a generalized stable model IE of 〈P,Γ 〉 in objc(TPκΓ
↑ ω) such that IE

satisfies O. Then, by Lemma 2.1, IE ∈ min-GST 〈P∪{←notO},Γ 〉. By (a),
min-GST 〈P∪{←notO},Γ 〉 is given by minΓ(objc(T(P∪{←notO})κΓ ↑ ω)). 2

Example 3.3 (cont. from Example 2.2) The abductive general logic pro-
gram 〈P,Γ 〉, where P = { p← r ∧ b∧ not q , q ← a , r ← , ← not p }
and Γ = {a, b}, is transformed to P κΓ which contains:

(p ∧ b ∧ ¬Kq) ∨ ¬Kb ∨ Kq ← r , (q ∧ a) ∨ ¬Ka← , r ← , Kp← ,

and ← ¬KH ∧ H for every H ∈ HB. Then, {r, p, b,¬Kq,¬Ka,Kp} is the
unique canonical set in TPκΓ

↑ ω, and hence min-GST 〈P,Γ 〉 = {{r, p, b}}.

4 Abductive Extended Disjunctive Programs

Gelfond [Gel90] and Inoue [Ino91] proposed more general frameworks for ab-
duction than that in [KM90] by allowing classical negation and disjunctions
in a program. Now, we consider a fixpoint theory for such extended classes
of abductive programs.

An extended disjunctive program is a disjunctive program which contains
classical negation (¬) as well as negation as failure (not) in the program
[GL91], and is defined as a finite set of clauses of the form:

L1∨. . .∨Ll ← Ll+1∧. . .∧Lm∧notLm+1∧. . .∧notLn (n ≥ m ≥ l ≥ 0) (10)

where each Li is a positive or negative literal. The semantics of extended
disjunctive programs is given by the notion of answer sets. We denote the set
of all ground literals from a program as L = HB∪{¬B | B ∈ HB}. Let P be
an extended disjunctive program and S ⊆ L. Then, the reduct PS of P by S
is defined as follows: A clause L1∨ . . .∨Ll ← Ll+1∧ . . .∧Lm is in PS if there
is a ground clause of the form (10) from P such that {Lm+1, . . . , Ln}∩S = ∅.
Then, S is a consistent answer set of P , if S is a minimal set satisfying the
conditions: (i) for each clause L1 ∨ . . .∨Ll ← Ll+1 ∧ . . .∧Lm (l ≥ 1) in PS ,
if {Ll+1, . . . , Lm} ⊆ S, then Li ∈ S for some 1 ≤ i ≤ l; (ii) for each integrity

14

constraint ← L1 ∧ . . . ∧ Lm in PS , {L1, . . . , Lm} 6⊆ S; and (iii) S does not
contain both B and ¬B for any atom B.

Since the answer set semantics of extended disjunctive programs is a
direct extension of both the minimal model semantics of positive disjunctive
programs and the stable model semantics of general logic programs, the
results presented in Sections 3.1 and 3.2 can be naturally extended. The
extra condition we have to consider is the constraint that an atom B and
its negation ¬B cannot be in a consistent answer set. Now, for an extended
disjunctive program P , the transformed program P κ is defined as follows
[IKH92]: For each clause of the form (10) from P , P κ contains

(L1 ∧ ¬KLm+1 ∧ . . . ∧ ¬KLn) ∨ . . . ∨ (Ll ∧ ¬KLm+1 ∧ . . . ∧ ¬KLn)

∨ KLm+1 ∨ . . . ∨ KLn ← Ll+1 ∧ . . . ∧ Lm , (11)

for each literal L in L, the clause ← ¬KL ∧ L is in P κ, and for each atom
B in HB, the clause ← ¬B ∧B is in P κ. In the following, the function objc
is extended to a collection of sets of literals in an obvious way.

Theorem 4.1 [IS92] Let P be an extended disjunctive program, and ASP
the set of all consistent answer sets of P . Then, ASP = objc(min(TPκ ↑ ω)).

Now, we define abduction within extended disjunctive programs.

Definition 4.1 An abductive extended disjunctive program is a pair 〈P,Γ 〉,
where P is an extended disjunctive program and Γ is a set of positive/negative
predicate symbols from P . The abducibles A±Γ (⊆ L) is the set of all ground
literals with the predicates from Γ.

Let E be a subset of A±Γ . A set of literals SE is a belief set of 〈P,Γ 〉 if
it is a consistent answer set of the extended disjunctive program P ∪E and
satisfies E = SE ∩ A±Γ . A minimal belief set and a (minimal) explanation
are defined in the same way as in Definitions 2.4 and 2.5.

The transformation for an abductive extended disjunctive program P is
defined in the same way as Definition 3.7: For each clause in P of the form:

H1 ∨ . . . ∨Hl ← B1 ∧ . . . ∧Bm ∧A1 ∧ . . . ∧An
∧ notBm+1 ∧ . . . ∧ notBs ∧ notAn+1 ∧ . . . ∧ notAt

where l ≥ 0, s ≥ m ≥ 0, t ≥ n ≥ 0, Hi’s are literals, Bj ’s are non-abducible
literals, and Ak’s are abducible literals, P κΓ contains the clause:

(H1 ∧ PRE) ∨ . . . ∨ (Hl ∧ PRE) ∨ ¬KA1 ∨ . . . ∨ ¬KAn
∨ KBm+1 ∨ . . . ∨ KBs ∨An+1 ∨ . . . ∨At ← B1 ∧ . . . ∧Bm (12)

15

where PRE = A1∧ . . .∧An∧¬KBm+1∧ . . .∧¬KBs∧¬KAn+1∧ . . .∧¬KAt,
and for each literal L in L, the clause ← ¬KL ∧ L is in P κΓ , and for each
atom H in HB, the clause ← ¬H ∧H is in P κΓ .

The next theorem characterizes the belief sets of an abductive extended
disjunctive program and the minimal explanations of an observation.

Theorem 4.2 Let 〈P,Γ 〉 be an abductive extended disjunctive program.
(a) Let min-BS〈P,Γ 〉 be the set of all minimal belief sets of 〈P,Γ 〉. Then,
min-BS〈P,Γ 〉 = minΓ(objc(min(TPκΓ

↑ ω))).

(b) E ⊆ A±Γ is a minimal explanation of a literal O with respect to 〈P,Γ 〉
iff SE ∈ minΓ(objc(min(T(P∪{←notO})κΓ ↑ ω))).

Proof: The proof can be given in a similar way to the proof of Theorem 3.6
except that, according to the existence of disjunctions in P , each Iκ is taken
from min(TPκΓ

↑ ω) (as in Theorem 3.1 (c) and Theorem 4.1) instead of
TPκΓ

↑ ω when proving the result corresponding to Lemma 3.5 (a). 2

5 Bottom-Up Evaluation of Abductive Programs

In this section, we investigate the procedural aspect of the fixpoint theory
for abductive programs in the context of a particular inference system called
the model generation theorem prover (MGTP) [FH91, IKH92]. MGTP is a
parallel and refined version of SATCHMO [MB88], which is a bottom-up
forward-reasoning system that uses hyperresolution and case-splitting on
non-unit hyperresolvents.

Let P be a positive disjunctive program consisting of clauses of the form:

(H1,1 ∧ . . . ∧H1,k1) ∨ . . . ∨ (Hl,1 ∧ . . . ∧Hl,kl)← B1 ∧ . . . ∧Bm (13)

where Bi’s (1 ≤ i ≤ m; m ≥ 0) and Hj,l’s (1 ≤ j ≤ l; 1 ≤ l ≤ kj ; kj ≥ 1; l ≥
0) are atoms, and all variables are assumed to be universally quantified
at the front of the clause. Given an interpretation I, MGTP applies the
following two operations to I and either expands I or rejects I:

1. If there is a non-negative clause of the form (13) in P and a substitution
σ such that I |= (B1 ∧ . . . ∧Bm)σ and I 6|= (Hi,1 ∧ . . . ∧Hi,ki)σ for all
i = 1, . . . , l, then I is expanded in l ways by adding Hi,1σ, . . . ,Hi,kiσ
to I for each i = 1, . . . , l.

2. If there is a negative clause ← B1, . . . , Bm in P and a substitution σ
such that I |= (B1 ∧ . . . ∧Bm)σ, then I is discarded.

16

Here, in obtaining a substitution σ, it is sufficient to consider matching
instead of full unification if every clause is range-restricted [MB88], that is,
if every variable in the clause has at least one occurrence in the body. In
this case, every set I of atoms constructed by MGTP contains only ground
atoms. Thus, a program P input to MGTP is assumed to be a finite,
function-free set of range-restricted clauses. The connection between closure
computation by MGTP and the fixpoint semantics with the mapping TP

given in Section 3 is obvious, which can be regarded as an extension of the
relation between hyperresolution and van Emden and Kowalski’s fixpoint
semantics for definite programs [vEK76, Section 8]. In fact, for each split
interpretation constructed by MGTP, hyperresolution is applied in the same
way as in the case of definite programs.

For abductive Horn, general and extended (disjunctive) programs, our
program translations are especially suitable for OR-parallelism of MGTP
because, for each negation-as-failure formula as well as an abducible, we
make guesses to believe or disbelieve it. Inoue et al [IOHN93] have shown
that model generation for abductive Horn programs using the translation in
Section 3.3 successfully extracts a great amount of parallelism of MGTP in
solving a logic circuit design problem.

6 Comparison with Other Approaches

Console et al [CDT91] characterize abduction by deduction (called the object-
level abduction) through Clark’s completion semantics of a program [Cla78]
as follows: For an abductive logic program 〈P,Γ 〉, let comp−Γ(P) be the
completion of non-abducible predicates in P . For an observation O, if E is
a formula from Γ satisfying the conditions:

1. comp−Γ(P) ∪ {O} |= E, and

2. no other E′ from Γ satisfying the above condition subsumes E,

then a minimal set S ⊆ A±Γ such that S |= E is an explanation of O.
The object-level abduction coincides with the meta-level characteriza-

tion of abduction in terms of SLDNF proof procedure for hierarchical logic
programs 3 [CDT91]. Note here that the restriction of hierarchical programs
is necessary not only for assuring the completeness of SLDNF resolution, but
also for characterizing abduction in terms of completion (see also [Kon92]).

3General logic programs containing no predicates defined via positive/negative cycles.

17

Example 6.1 Let us consider a program containing cyclic clauses:
P = { p← q, q ← p, q ← a } where a is an abducible atom.

Then, comp−Γ(P) = { p ↔ q, q ↔ p ∨ a }, and for an observation
O = p, P ∪ {a} |= p, while comp−Γ(P) ∪ {O} 6|= a.

On the other hand, P κΓ = { p ← q, q ← p, (q ∧ a) ∨ ¬Ka ← , ←
¬Ka ∧ a } is obtained by our transformation in Section 3.3, and {q, a, p} is
in TPκΓ

↑ ω.

Denecker and De Schreye [DD92] recently proposed a model generation
procedure for Console et al’s object-level abduction. In contrast to us, they
compute the models of the only-if part of a completed program that is not
range-restricted in general, even if the original definite clauses are range-
restricted. To this end, they have to extend the model generation method
by incorporating term rewriting techniques, while we can use the original
MGTP without any change. Furthermore, the application of their procedure
is limited to definite programs. Bry [Bry90] firstly considered abduction by
model generation, but his abduction is defined in terms of a meta-theory.

Eshghi and Kowalski [EK89] give an abductive interpretation of nega-
tion as failure in general logic programs. For each negation-as-failure for-
mula notB(x), the formula B∗(x) is associated where B∗ is a new predicate
symbol not appearing anywhere in the program. A program P is thereby
transformed into the definite program P ∗ together with the set Γ∗ of ab-
ducible predicates B∗’s. Then, an atom O is true in a stable model of P iff
there is a set E∗ of abducibles from Γ∗ such that (i) P ∗ ∪ E∗ |= O, and (ii)
P ∗ ∪ E∗ satisfies the following integrity constraints:

¬(B(x) ∧B∗(x)) and B(x) ∨B∗(x) for every abducible predicate B∗.

However, the disjunctive constraints cannot be checked without actually
computing models in general. Thus, it is difficult to design an elegant top-
down proof procedure which is sound with respect to the stable model se-
mantics. In fact, Eshghi and Kowalski [EK89] show an abductive proof
procedure for general logic programs by incorporating consistency tests into
SLD resolution, but its soundness with respect to the stable model seman-
tics is not guaranteed in general. 4 For an abductive general logic program
〈P,Γ 〉, Kakas and Mancarella [KM91] also transform the negation-as-failure
formulas in P , and show a top-down abductive procedure for the transformed

4For Example 3.2, the top-down abductive procedure of [EK89] gives a proof for O = p,
but no stable model satisfies p. However, Eshghi and Kowalski’s abductive proof procedure
is sound with respect to the preferred extension semantics by Dung [Dun91].

18

program 〈P ∗,Γ∪Γ∗ 〉, where P ∗ and Γ∗ are obtained by the transformation
of [EK89]. However, this transformation inherits the difficulty of compu-
tation from Eshghi and Kowalski’s abductive interpretation of negation as
failure, and their procedure suffers from the soundness problem with respect
to the generalized stable model semantics.

Alternatively, [Ino91] and [SI91] show that an abductive general logic
program 〈P,Γ 〉 can be transformed to a single general logic program. For
each atom A(x) from Γ, they introduce the negative literal ¬A(x) and a
pair of clauses:

A(x)← not¬A(x) , ¬A(x)← notA(x) . (14)

Then, there is a 1-1 correspondence between the generalized stable models
of 〈P,Γ 〉 and the stable models of the transformed program. Using this
transformation, Satoh and Iwayama [SI91] propose a bottom-up, TMS-style
procedure for computing stable models of a general logic program, which is
similar to [SZ90]’s procedure and performs an exhaustive search with back-
tracking. At this point, we can use any procedure to compute stable models.
Comparing each procedure, the MGTP-based procedure by [IKH92] has the
following advantages over procedures of [SZ90, SI91]. First, MGTP can deal
with disjunctive programs, while TMS cannot. Second, MGTP gives high
inference rates for range-restricted clauses by avoiding computation rela-
tive to their useless ground instances, while TMS generally deals only with
the propositional case. Third, MGTP performs a backtrack-free search and
more easily parallelized than others.

Although the simulation (14) of abducibles is theoretically correct, this
technique has the drawback that it may generate 2|AΓ| interpretations even
for an abductive Horn program, and is, therefore, often explosive for a num-
ber of practical applications. The program transformation methods pro-
posed in this paper avoid this problem in two aspects. First, for each epis-
temic hypothesis which is either a positive hypothesis from abducibles or a
negative hypothesis through negation as failure, case-splitting is delayed as
long as possible since an interpretation is expanded with a ground clause
only when the body of the transformed clause becomes true. Second, by
using MGTP, a ground instance of hypothesis is introduced only when there
is a ground substitution for each clause with variables such that the body
of the clause is satisfied. Hence, hypotheses are introduced when they are
necessary, and the number of generated interpretations is reduced as much
as possible.

A fixpoint semantics for positive disjunctive programs has been studied
by several researchers. Minker and Rajasekar [MR90] consider a mapping

19

over the set of positive disjunctions (called state). Fernandez and Minker
[FM91] present a fixpoint semantics for stratified disjunctive programs using
a fixpoint operator over the sets of minimal interpretations. Decker [Dec92]
also develops a fixpoint semantics for positive disjunctive programs based
on the different manipulation of standard Herbrand interpretations.

In [FLMS91], Fernandez et al develop a method of computing stable
models by using a similar but different program transformation from ours.
In our transformation (4), each head H is associated with its prerequisite
condition ¬KBm+1∧ . . .∧¬KBn in an explicit way, while this is not the case
in their transformation. Furthermore, we effectively use negative clauses to
prune away improper extensions, while their transformation does not use any
such negative clauses. Although we could extend [FLMS91]’s transformation
to deal with abductive general logic programs, our translation appears to
be more suitable for handling abducibles. Since the prerequisite condition
in Definition 3.7 contains abduced atoms, we can easily identify abducibles
from other atoms in each obtained model, and negative clauses can be used
to test the consistency of abducibles in each interpretation.

7 Conclusion

We have presented a uniform framework for fixpoint characterization of ab-
ductive Horn, general, and extended (disjunctive) programs. Based on a
fixpoint operator over a complete lattice consisting of the sets of Herbrand
interpretations, the generalized stable model semantics of an abductive gen-
eral logic program can be characterized by the fixpoint of a suitably trans-
formed disjunctive program. In the proposed transformations, both nega-
tive hypotheses through negation as failure and positive hypotheses from
the abducibles are dealt with uniformly. The result has also been directly
applied to the belief set semantics of abductive extended disjunctive pro-
grams. Compared with other approaches, our fixpoint theory provides a
constructive way to give explanations for observations. We also showed that
a bottom-up model generation procedure can be used for computing gener-
alized stable models or belief sets and has a computational advantage from
the viewpoint of parallelism. Since there has been no algorithm which can
compute the belief sets of arbitrary forms of abductive programs, our proce-
dural semantics also provides the most general abductive procedure in the
class of function-free and range-restricted programs.

20

Acknowledgment

Many thanks to Ryuzo Hasegawa, Yoshihiko Ohta and Makoto Nakashima
for useful discussion and for help with MGTP.

References

[Bry90] F. Bry. Intensional updates: abduction via deduction. In: Proc. 7th
Int. Conf. Logic Programming, pages 561–575, 1990.

[Cla78] K.L. Clark. Negation as failure. In: H. Gallaire and J. Minker, edi-
tors, Logic and Data Bases, pages 293–322, Plenum, 1978.

[CDT91] L. Console, D.T. Dupre and P. Torasso. On the relationship be-
tween abduction and deduction. J. Logic and Computation, 1:661–690,
1991.

[Dec92] H. Decker. Foundations of first-order databases. Research Report,
Siemens, Munich, 1992.

[DD92] M. Denecker and D. De Schreye. On the duality of abduction and
model generation. In: Proc. Int. Conf. Fifth Generation Computer Sys-
tems 1992, pages 650–657, 1992.

[Dun91] P.M. Dung. Negations as hypotheses: an abductive foundation for
logic programming. In: Proc. 8th Int. Conf. Logic Programming, pages
3–17, 1991.

[EK89] K. Eshghi and R.A. Kowalski. Abduction compared with negation
by failure. In: Proc. 6th Int. Conf. Logic Programming, pages 234–254,
1989.

[FM91] J.A. Fernandez and J. Minker. Computing perfect models of dis-
junctive stratified databases. In: Proc. ILPS’91 Workshop on Disjunctive
Logic Programs, 1991.

[FLMS91] J.A. Fernandez, J. Lobo, J. Minker, and V.S. Subrahmanian.
Disjunctive LP + integrity constraints = stable model semantics. In: Proc.
ILPS’91 Workshop on Deductive Databases, 1991.

[FH91] H. Fujita and R. Hasegawa. A model generation theorem prover
in KL1 using a ramified-stack algorithm. In: Proc. 8th Int. Conf. Logic
Programming, pages 494–500, 1991.

[Gel90] M. Gelfond. Epistemic approach to formalization of commonsense
reasoning. Research Report, Computer Science Department, University
of Texas at El Paso, El Paso, 1990.

21

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In: Proc. 5th Int. Conf. Symp. Logic Programming, pages
1070–1080, 1988.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9:365–385, 1991.

[Ino91] K. Inoue. Extended logic programs with default assumptions. In:
Proc. 8th Int. Conf. Logic Programming, pages 490–504, 1991.

[Ino92] K. Inoue. Linear resolution for consequence finding. Artificial Intel-
ligence, 56:301–353, 1992.

[IKH92] K. Inoue, M. Koshimura and R. Hasegawa. Embedding negation as
failure into a model generation theorem prover. In: Proc. 11th Int. Conf.
Automated Deduction, Lecture Notes in Artificial Intelligence, 607, pages
400–415, Springer-Verlag, 1992.

[IOHN93] K. Inoue, Y. Ohta, R. Hasegawa and M. Nakashima. Bottom-up
abduction by model generation. In: Proc. 13th Int. Joint Conf. Artificial
Intelligence, to appear, 1993.

[IS92] K. Inoue and C. Sakama. A uniform approach to fixpoint charac-
terization of disjunctive and general logic programs. Technical Report
TR-817, ICOT, Tokyo, October 1992.

[KM90] A.C. Kakas and P. Mancarella. Generalized stable models: a seman-
tics for abduction. In: Proc. 9th European Conf. Artificial Intelligence,
pages 385–391, 1990.

[KM91] A.C. Kakas and P. Mancarella. Knowledge assimilation and abduc-
tion. In: Proc. 1990 Workshop on Truth Maintenance Systems, Lecture
Notes in Artificial Intelligence, 515, pages 54–70, Springer-Verlag, 1991.

[Kon92] K. Konolige. Abduction versus closure in causal theories. Artificial
Intelligence, 53:255–272, 1992.

[LT84] J.W. Lloyd and R.W. Topor. Making Prolog more expressive.
J. Logic Programming, 3:225–240, 1984.

[MB88] R. Manthey and F. Bry. SATCHMO: a theorem prover implemented
in Prolog. In: Proc. 9th Int. Conf. Automated Deduction, Lecture Notes
in Computer Science, 310, pages 415–434, Springer-Verlag, 1988.

[Min82] J. Minker. On indefinite data bases and the closed world assump-
tion. In: Proc. 6th Int. Conf. Automated Deduction, Lecture Notes in
Computer Science, 138, pages 292–308, Springer-Verlag, 1982.

[MR90] J. Minker and A. Rajasekar. A fixpoint semantics for disjunctive
logic programs. J. Logic Programming, 9:45–74, 1990.

22

[PGA87] D. Poole, R. Goebel and R. Aleliunas. Theorist: a logical reasoning
system for defaults and diagnosis. In: N. Cercone and G. McCalla, editors,
The Knowledge Frontier: Essays in the Representation of Knowledge,
pages 331–352, Springer-Verlag, 1987.

[PE92] C. Preist and K. Eshghi. Consistency-based and abductive diagnoses
as generalized stable models. In: Proc. Int. Conf. Fifth Generation Com-
puter Systems 1992, pages 514–521, 1992.

[SZ90] D. Sacca and C. Zaniolo. Stable models and non-determinism in logic
programs with negation. In: Proc. 9th ACM SIGACT-SIGMOD-SIGART
Symp. Principles of Database Systems, pages 205–229, 1990.

[SI91] K. Satoh and N. Iwayama. Computing abduction by using the TMS.
In: Proc. 8th Int. Conf. Logic Programming, pages 505–518, 1991.

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate
logic as a programming language. J. ACM, 23:733–742, 1976.

23

