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Abstract. This paper studies generality relations on logic programs.
Intuitively, a program P1 is more general than another program P2 if P1

gives us more information than P2. In this paper, we define various kinds
of generality relations over nonmonotonic programs in the context of an-
swer set programming. The semantic properties of generality relations are
investigated based on domain theory, and both a minimal upper bound
and a maximal lower bound are constructed for any pair of logic pro-
grams. We also introduce the concept of strong generality between logic
programs and investigate its relationships to strong equivalence. These
results provide a basic theory to compare the degree of incompleteness
between nonmonotonic logic programs, and also have important appli-
cations to inductive logic programming and multi-agent systems.

1 Introduction

Nonmonotonic logic programs, or logic programs with negation as failure and/or
disjunctions, are useful for representing incomplete knowledge and partial infor-
mation. To judge whether two logic programs represent the same knowledge,
the notion of equivalence has recently become important in logic programming
[7,6]. Another useful measure to compare the amount of information brought
by logic programs is the concept of generality. Intuitively, a logic program P1
is considered more general than another logic program P2 if P1 gives us more
information than P2.

The generality notion is important in the field of inductive logic programming,
and basic studies have been done in this context [10,8,9] for monotonic logic
programs, which can be defined as subsets of first-order clausal theories. Model
theoretically, given two monotonic programs P1 and P2, the situation that P1 is
more general than P2 is represented as P1 |= P2, that is, P1 entails P2, which
means that every model of P1 is also a model of P2. For instance, the program
{ p ← } is more general than the program { p ← q }.

In the context of nonmonotonic logic programs, however, relatively little at-
tention is given to generality relations although the equivalence notion has been
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studied in depth. Let us intuitively define that, for two nonmonotonic programs
P1 and P2, P1 is more general than P2 if P1 entails more information than P2
under the canonical model semantics (e.g., answer set semantics [3]). Unfortu-
nately, there is a difficulty in this definition such that a nonmonotonic program
generally has multiple canonical models. This is contrasted to a monotonic pro-
gram that has a unique canonical model or an “extension” as the logical conse-
quences of the program. For instance, consider two nonmonotonic programs:

P1 : p ← not q ,

P2 : p ← not q ,

q ← not p .

Here, P1 has the single answer set {p} and P2 has two answer sets {p} and
{q}. If we reason skeptically and draw conclusions from the intersection of all
answer sets, P1 entails p but P2 entails nothing. As a result, P1 is considered
more informative and more general than P2. By contrast, if we reason credulously
and draw conclusions from the union of all answer sets, P2 is considered more
informative than P1. Thus, the result depends on the type of inference.

In this paper, we study a theory to compare the degree of incomplete informa-
tion brought by nonmonotonic logic programs in the framework of answer set pro-
gramming. By the above discussion, it is more appropriate to focus on the whole
collection of answer sets of a program than on the set of literals entailed from it.
Then, to compare the infomation contents of two logic programs, it is natural to di-
rectly compare the collections of answer sets of the two programs.For this purpose,
domain theory [11,16,4], which studies orderings over the powerset of a domain,
is particularly convenient. There are at least two reasonable philosophies to judge
that one description is more informative than another description in domain the-
ory. Suppose, for example, that there are three descriptions about the contents of
a bag, which are represented by the following logic programs:

P1 : red fruit ; yellow fruit ← ,

P2 : cherry ; strawberry ← ,

red fruit ← cherry ,

red fruit ← strawberry ,

P3 : cherry ; banana ; purple fruit ← ,

red fruit ← cherry ,

yellow fruit ← banana .

Then, P2 is more informative than P1 in the sense that both cherry and straw-
berry provide further restrictions on the contents by ruling out the possibility of
yellow fruit as well as other red fruit like apple, for example. We will represent
this situation as P2 |=� P1 meaning that, for each answer set S of P2, there is
an answer set T of P1 such that T ⊆ S. The relation |=� is called the Smyth
ordering. On the other hand, P3 is more informative than P1 in the sense that P3
provides a further enumeration of positive assertions which does not rule out the
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possibility of purple fruit like grape, for example. We will represent this situation
as P3 |=� P1 meaning that, for each answer set T of P1, there is an answer set
S of P3 such that T ⊆ S. The relation |=� is called the Hoare ordering. Then,
both a minimal upper bound and a maximal lower bound are constructed for
any pair of logic programs with respect to each generality ordering. We will also
relate these two generality orderings with the generality relations with respect
to skeptical and credulous entailment, respectively. Furthermore, we will intro-
duce the concept of strong generality between logic programs and investigate its
relationship to strong equivalence [6].

The rest of this paper is organized as follows. After introducing basic concepts
of answer set programming and domain theory, Section 2 presents a theory of
generality in logic programs. Section 3 examines minimal upper and maximal
lower bounds of logic programs with respect to generality orderings, and discusses
how to compute logic programs whose answer sets exactly correspond to those
bounds. Section 4 relates the generality relations with skeptical and credulous
entailment in answer set programming. Section 5 defines the notion of strong
generality and relates it with strong equivalence of logic programs. Section 6
discusses applications of generality relations to inductive logic programming and
multi-agent systems as well as related work.

2 Generality Relations over Answer Sets

2.1 Extended Disjunctive Programs

A program considered in this paper is an extended disjunctive program (EDP)
which is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ l ≥ 0) (1)

where each Li is a literal, not is negation as failure (NAF), and “;” represents
disjunction. The left-hand side of a rule is the head , and the right-hand side is
the body. A rule is disjunctive if its head contains more than one literal. A rule
is an integrity constraint if its head is empty, and is a fact if its body is empty.
An EDP is called an extended logic program (ELP) if l ≤ 1 for each rule (1). A
program is NAF-free if every rule contains no not, i.e., m = n for each rule (1). A
program with variables is semantically identified with its ground instantiation.

In this paper, we consider the answer set semantics for EDPs [3]. Let Lit be
the set of all ground literals in the language of programs. A set S (⊆ Lit) satisfies
a ground rule of the form (1) if {Ll+1, . . . , Lm} ⊆ S and {Lm+1, . . . , Ln}∩S = ∅
imply Li ∈ S for some i (1 ≤ i ≤ l). Let P be an NAF-free EDP. Then, a set
S(⊆ Lit) is an answer set of P if S is a minimal set such that

1. S satisfies every rule from the ground instantiation of P ,
2. S = Lit if S contains a pair of complementary literals, L and ¬L.

Next, let P be any EDP and S ⊆ Lit . For every rule of the form (1) in the
ground instantiation of P , the rule L1; · · · ; Ll ← Ll+1, . . . , Lm is included in the
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NAF-free program PS iff {Lm+1, . . . , Ln} ∩ S = ∅. Then, S is an answer set of
P if S is an answer set of PS . The set of all answer sets of P is written as A(P ).
An answer set is consistent if it is not Lit . A program P is consistent if it has a
consistent answer set; otherwise, P is inconsistent. An inconsistent program is
called contradictory if it has the single answer set Lit , and is called incoherent
if it has no answer set.

We will see that the following two notions of equivalence are important to
develop a theory of generality in answer set programming.

Definition 2.1. Let P and Q be programs. P and Q are weakly equivalent if
A(P ) = A(Q) holds. On the other hand, P and Q are strongly equivalent [6] if
for any logic program R, A(P ∪ R) = A(Q ∪ R) holds.

For example, P = { p ← not q, q ← not p } and Q = { p; q ← } are weakly
equivalent, but not strongly equivalent.

2.2 Ordering on Powersets

We first recall some mathematical definitions about domains [4]. A pre-order 

is a binary relation which is reflexive and transitive. A pre-order 
 is a partial
order if it is also anti-symmetric. A pre-ordered set (resp. partially ordered set ;
poset) is a set D with a pre-order (resp. partial order) 
 on D.

For any pre-ordered set 〈D, 
〉, a poset is induced over the equivalence classes
of D. That is, for any element X ∈ D, define the equivalence class as

[X ] = { Y ∈ D | Y 
 X, X 
 Y }.

The equivalence relation partitions D into a set of disjoint equivalence classes.
Introducing the relation 
 on the set of these equivalence classes as:

[X ] 
 [Y ] if X 
 Y,

the relation 
 becomes a partial order on the set.
For any set D, let P(D) be the powerset of D. Given a poset 〈D, 
〉 and

X, Y ∈ P(D), the Smyth order is defined as

X |=� Y iff ∀x∈X ∃y∈Y. y 
 x ,

and the Hoare order is defined as

X |=� Y iff ∀y∈Y ∃x∈X. y 
 x .

The relations |=� and |=� are pre-orders on P(D). Note that the orderings |=�

and |=� are slightly different from the standard ones: we allow the empty set
∅ (∈ P(D)) as the top element �� in 〈P(D), |=�〉 and the bottom element ⊥�

in 〈P(D), |=�〉. This is because we will associate ∅ with the class of incoherent
programs so that we enable comparison of all classes of EDPs.

Example 2.1. Consider the poset 〈P({p, q}), ⊆〉. Then, we have {{p, q}} |=�

{{p}} and {{p}} |=� {{p}, {q}}, and hence {{p, q}} |=� {{p}, {q}}. On the
other hand, {{p, q}} |=� {{p}, {q}} but {{p}, {q}} |=� {{p}}. Note that both
{∅, {p}} |=� {∅, {q}} and {∅, {q}} |=� {∅, {p}} hold, indicating that |=� is not a
partial order.
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In the following, we assume a poset 〈D, 
〉 such that the domain D = P(Lit)
is the family of subsets of Lit , i.e., the class of sets of literals in the language
and the partial-order 
 is the subset relation ⊆. Then, the Smyth and Hoare
orderings are defined on P(P(Lit)), which enables us to order sets of literals or
sets of answer sets. In particular, both 〈P(P(Lit)), |=�〉 and 〈P(P(Lit)), |=�〉 are
pre-ordered sets. Moreover, if we associate an EDP P with its set of answer sets
A(P ), the ordering on the EDPs becomes possible as follows.

Definition 2.2. Given the poset 〈P(Lit), ⊆〉 and two programs P, Q that are
constructed in the same language with Lit , we define:

P |=� Q if A(P ) |=� A(Q),
P |=� Q if A(P ) |=� A(Q).

We say that P is more �-general (resp. more �-general) than Q if P |=� Q (resp.
P |=� Q).

Intuitively, �-generality and �-generality reflect the following situations. P |=� Q
means that any answer set of P is more (or equally) informative than some
answer set of Q. On the other hand, P |=� Q means that any answer set of Q
is less (or equally) informative than some answer set of P . When both P and
Q have single answer sets, it is obvious that P |=� Q iff P |=� Q. The notion
of �-generality has been introduced in [5] such that Q is defined to be weaker
than P if P |=� Q, although properties of this ordering have never been deeply
investigated so far.

Both �-generality and �-generality are naturally connected to the notion of
weak equivalence in answer set programming.

Theorem 2.1. Let P and Q be EDPs. Then, the following three are equivalent:

(1) P |=� Q and Q |=� P ;
(2) P |=� Q and Q |=� P ;
(3) P and Q are weakly equivalent.

Proof. We prove (1)⇔(3) but (2)⇔(3) can be proved in the same way.
P |=� Q and Q |=� P

iff ∀S ∈A(P )∃T ∈A(Q). T ⊆ S and ∀T ∈A(Q)∃S ∈A(P ). S ⊆ T
iff ∀S ∈A(P )∃T ∈A(Q)∃S′ ∈A(P ). S′ ⊆ T ⊆ S and ∀T ∈A(Q)∃S ∈A(P )∃T ′∈
A(Q). T ′ ⊆ S ⊆ T
iff ∀S ∈A(P )∃T ∈A(Q). T = S and ∀T ∈A(Q)∃S ∈A(P ). S = T (because for
any two answer sets S, T ∈ A(P ), S ⊆ T implies S = T by the fact that A(P ) is
an anti-chain on the poset 〈P(Lit), ⊆〉)
iff ∀S ∈A(P ). S ∈ A(Q) and ∀T ∈A(Q). T ∈ A(P )
iff A(P ) ⊆ A(Q) and A(Q) ⊆ A(P ) iff A(P ) = A(Q). ��

By Theorem 2.1, for any EDP P , every EDP in the equivalence class [P ] induced
by the pre-order |=� or |=� is weakly equivalent to P .
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Example 2.2. Consider the following programs:

P1 : p ← not q,

P2 : p ← not q,

q ← not p,

P3 : p ; q ← ,

P4 : p ; q ← ,

p ← q,

q ← p.

Then, P4 |=� P1 |=� P2, and P4 |=� P2 |=� P1 (see Example 2.1). P2 and P3 are
weakly equivalent, and thus P2 |=� P3 |=� P2 and P2 |=� P3 |=� P2.

3 Minimal Upper and Maximal Lower Bounds

In this section, we show that both a minimal upper bound and a maximal lower
bound of any pair of logic programs exist with respect to generality orderings,
and discuss how to compute logic programs whose answer sets exactly correspond
to those bounds. Those bounds are important in the theory of generalization and
specialization in inductive logic programming [10]. In the following, let EDP be
the class of all EDPs which can be constructed in the language.

Proposition 3.1. Both 〈EDP , |=�〉 and 〈EDP , |=�〉 are pre-ordered sets.

For notational convenience, we denote the �- or �-generality relation as |=�/� when
distinction between �- and �-general orderings is not important. In what follows,
we consider the problem to find a minimal upper bound (mub) and a maximal
lower bound (mlb) of given two programs P1 and P2. Because 〈EDP , |=�/�〉 is
only a pre-ordered set, there is no unique minimal/maximal bound in general.
In Section 3.2, however, it is shown that the least upper bound (lub) and the
greatest lower bound (glb) can be constructed for the equivalence classes [P1]
and [P2] under these orderings.

3.1 Mub and Mlb in Smyth and Hoare Orderings

In this section, we suppose that P1, P2 ∈ EDP .

Definition 3.1. A program Q ∈ EDP is an upper bound of P1 and P2 in
〈EDP , |=�/�〉 if Q |=�/� P1 and Q |=�/� P2. An upper bound Q is an mub of P1
and P2 in 〈EDP , |=�/�〉 if for any upper bound Q′, Q |=�/� Q′ implies Q′ |=�/� Q.

On the other hand, Q ∈ EDP is a lower bound of P1 and P2 in 〈EDP , |=�/�〉
if P1 |=�/� Q and P2 |=�/� Q. A lower bound Q is an mlb of P1 and P2 in
〈EDP , |=�/�〉 if for any lower bound Q′, Q′ |=�/� Q implies Q |=�/� Q′.

In the following, for any set X , let min(X) = { x ∈ X | ¬∃y ∈X. y ⊂ x } and
max(X) = { x ∈ X | ¬∃y ∈X. x ⊂ y }. We often denote min X and maxX by
omitting (). For two sets of literals S, T ⊆ Lit , we define
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S � T =
{

S ∪ T , if S ∪ T does not contain a pair of complementary literals;
Lit , otherwise.

Theorem 3.1. (1) An EDP Q is an mub of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = min{ S � T | S ∈ A(P1), T ∈ A(P2) }.

(2) An EDP Q is an mlb of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = min(A(P1) ∪ A(P2)).

(3) An EDP Q is an mub of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = max(A(P1) ∪ A(P2)).

(4) An EDP Q is an mlb of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = max{ S ∩ T | S ∈ A(P1), T ∈ A(P2) }.

Proof. Because of the space limitation, we prove (1) and (2) only, but the proof of
(3) and (4) can be constructed in a similar way to that of (2) and (1), respectively.

(1) Q is an upper bound of P1 and P2 in 〈EDP , |=�〉 iff Q |=� P1 and Q |=� P2
iff ∀S ∈A(Q)∃T1 ∈A(P1). T1 ⊆ S and ∀S ∈A(Q)∃T2 ∈A(P2). T2 ⊆ S
iff ∀S ∈A(Q)∃T1 ∈A(P1)∃T2 ∈A(P2). T1 ∪ T2 ⊆ S. (*)

Now, suppose that A(Q) is given as min{T1 � T2 | T1 ∈ A(P1), T2 ∈ A(P2)}.
This Q is an upper bound of P1 and P2 because (*) is satisfied. If Q is contra-
dictory, then A(Q) = {Lit}. Then, for any T1 ∈ A(P1) and any T2 ∈ A(P2),
T1 � T2 = Lit , that is, T1 ∪ T2 is inconsistent. In this case, Q is an mub. Else if
Q is incoherent, then A(Q) = ∅. Then, for any T1 ∈ A(P1) and any T2 ∈ A(P2),
T1 �T2 is undefined, and thus, A(P1) = ∅ or A(P2) = ∅. That is, either P1 or P2
is incoherent. In this case, Q is an mub too.

Next, consider the case that Q is consistent. Suppose further that Q is not an
mub. Then, there is Q′ ∈ EDP such that (i) Q′ is an upper bound of P1 and P2,
(ii) Q |=� Q′, and (iii) Q′ �|=� Q. Here, (ii) and (iii) imply that A(Q) �= A(Q′)
by Theorem 2.1. Because A(Q) �= {Lit}, it holds that, for any S ∈ A(Q), S =
T1 � T2 = T1 ∪ T2 for some T1 ∈ A(P1) and T2 ∈ A(P2). For this S, there is an
answer set S′ ∈ A(Q′) such that S′ ⊆ S by (ii) and that S′ = T3 ∪ T4 for some
T3 ∈ A(P1) and T4 ∈ A(P2) by (i) and (*). Hence, T3 ∪ T4 ⊆ T1 ∪ T2. By the
minimality of A(Q) with respect to the operation min, it must be T3 ∪ T4 =
T1 ∪ T2, and thus S′ = S. Hence, A(Q) ⊆ A(Q′). By A(Q) �= A(Q′), there is
U ∈ A(Q′) such that U �∈ A(Q). Again, U = T ′ ∪ T ′′ for some T ′ ∈ A(P1) and
T ′′ ∈ A(P2) by (i) and (*). However, there must be some V ∈ A(Q) such that
V ⊆ U by the construction of A(Q) and the minimality of A(Q) with respect
to the operation min. Because U �∈ A(Q), V ⊂ U holds. However, by Q |=� Q′,
there is U ′ ∈ A(Q′) such that U ′ ⊆ V and hence U ′ ⊂ U . This contradicts the
fact that A(Q′) is an anti-chain. Therefore, Q is an mub of P1 and P2.

(2) Q is a lower bound of P1 and P2 in 〈EDP , |=�〉 iff P1 |=� Q and P2 |=� Q
iff ∀S ∈A(P1)∃T ∈A(Q). T ⊆ S and ∀S ∈A(P2)∃T ∈A(Q). T ⊆ S
iff ∀S ∈A(P1) ∪ A(P2)∃T ∈A(Q). T ⊆ S. (**)
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Now, suppose that A(Q) = min(A(P1) ∪ A(P2)). This Q is a lower bound of
P1 and P2 because (**) is satisfied. If Q is contradictory, then A(Q) = {Lit} and
both P1 and P2 are contradictory. In this case, Q is an mlb. Else if Q is incoherent,
then A(Q) = ∅ and both P1 and P2 are incoherent. In this case, Q is an mlb too.
Else if Q is consistent, suppose further that Q is not an mlb. Then, there is a
lower bound Q′ ∈ EDP of P1 and P2 such that Q′ |=� Q and A(Q) �= A(Q′) by
the same argument as the proof of (1). By Q′ |=� Q, for any T ′ ∈ A(Q′), there is
T ∈ A(Q) such that T ⊆ T ′. By this and the fact that Q′ is a lower bound of P1
and P2, we have that ∀S ∈A(P1)∪A(P2)∃T ′∈A(Q′)∃T ∈A(Q). T ⊆ T ′ ⊆ S. By
the minimality of A(Q) with respect to the operation min, it must be T ′ = T ,
and thus A(Q′) ⊆ A(Q). By A(Q) �= A(Q′), there is V ∈ A(Q) such that
V �∈ A(Q′). Since V ∈ A(P1) ∪ A(P2) by the construction of A(Q), there must
be some U ∈ A(Q′) such that U ⊆ V by (**). Because V �∈ A(Q′), U ⊂ V holds.
However, by Q′ |=� Q, there is V ′ ∈ A(Q) such that V ′ ⊆ U and thus V ′ ⊂ V .
This contradicts the fact that A(Q) is an anti-chain. Therefore, Q is an mlb of
P1 and P2. ��

Example 3.1. Consider P1, P2 and P4 in Example 2.2, where A(P1) = {{p}},
A(P2) = {{p}, {q}} and A(P4) = {{p, q}}. Because P4 |=� P2, an mub (resp.
mlb) of P2 and P4 in 〈EDP , |=�〉 is P4 (resp. P2). Correspondingly, min{T1�T2 |
T1 ∈ A(P2), T2 ∈ A(P4)} = min{{p, q}} = A(P4) and min(A(P2) ∪ A(P4)) =
min{{p}, {q}, {p, q}} = {{p}, {q}} = A(P2). Similarly, an mub (resp. mlb) of P2
and P4 in 〈EDP , |=�〉 is P4 (resp. P2). Correspondingly, max(A(P2) ∪ A(P4)) =
max{{p}, {q}, {p, q}} = {{p, q}} = A(P4) and max{T1 ∩ T2 | T1 ∈ A(P2), T2 ∈
A(P4)} = max{{q}, {p}} = A(P2).

Consider further the program P5 = { q ← not p }, where A(P5) = {{q}}. Then,
P4 is an mub of P1 and P5 in 〈EDP , |=�〉 because min{T1�T2 | T1 ∈ A(P1), T2 ∈
A(P5)} = min{{p, q}} = A(P4). Also, P2 is an mlb of P1 and P5 in 〈EDP , |=�〉
and is an mub of P1 and P5 in 〈EDP , |=�〉 because min(A(P1) ∪ A(P5)) =
max(A(P1) ∪ A(P5)) = {{p}, {q}} = A(P2). Finally, P6 = ∅ is an mlb of P1 and
P5 in 〈EDP , |=�〉 because max{T1 ∩ T2 | T1 ∈ A(P1), T2 ∈ A(P5)} = max{∅} =
A(P6).

Note that any contradictory program Q is an mub of { p ← } and { ¬p ← }
because A(Q) = min{T1 � T2 | T1 = {p}, T2 = {¬p}} = min{Lit} = {Lit}.

3.2 Lub and Glb on Equivalence Classes

Now, we can construct a poset from the pre-order set 〈EDP , |=�/�〉 in the usual
way as follows. For any program P ∈ EDP , consider the equivalence class:

[P ] = { Q ∈ EDP | A(Q) = A(P ) },

and then define the relation �� as:

[P ] �� [Q] if P |=� Q.

We denote the equivalence classes from 〈EDP , |=�〉 as P�. The relation �� and
the equivalence classes P� are defined in the same way, and we write ��/� and
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P�/� to represent two cases together. Then, the relation ��/� is a partial order
on P�/�.

Proposition 3.2. The poset 〈P�/�, ��/�〉 constitutes a complete lattice.

Proof. We prove for 〈P�, ��〉. For EDPs P1 and P2, consider an EDP P3 such
that A(P3) = min{S � T | S ∈ A(P1), T ∈ A(P2)}. Then, [P3] becomes the lub
of [P1] and [P2] by Theorem 3.1 (1). On the other hand, let P4 be an EDP such
that A(P4) = min(A(P1) ∪ A(P2)). Then, [P4] becomes the glb of [P1] and [P2]
by Theorem 3.1 (2). The top element �� of 〈P�, ��〉 is the class of incoherent
EDPs and the bottom element ⊥� of 〈P�, ��〉 is [∅].

The result for 〈P�, ��〉 can be shown in a similar manner except that the
top element �� of 〈P�, ��〉 is the class of contradictory EDPs and the bottom
element ⊥� of 〈P�, ��〉 is the class of incoherent EDPs. ��

3.3 Computing Mubs and Mlbs

Theorem 3.1 presents that, given two EDPs P1 and P2, there are mubs and mlbs
of P1 and P2 in 〈EDP , |=�/�〉. We briefly discuss how to actually construct those
EDPs whose answer sets are given as such in a finite domain.

Incidentally, composing programs corresponding to the four cases in Theo-
rem 3.1 has been studied in a series of work by Sakama and Inoue [13,14,15].
In [13], both a program Q such that A(Q) = A(P1) ∪ A(P2) and a program R
such that A(R) = A(P1) ∩ A(P2) have been composed, where Q is called gener-
ous coordination of P1 and P2 and R is called rigorous coordination of P1 and
P2. Thus, Theorem 3.1 (2) and (3) correspond to generous coordination. On the
other hand, [14] produces composition of P1 and P2, which is a program Q whose
answer sets are exactly given as min{T1 �T2 | T1 ∈ A(P1), T2 ∈ A(P2)} in The-
orem 3.1 (1). The final case (4) in Theorem 3.1 is considered in [15] as maximal
consensus among P1 and P2. The algorithms in [13,14,15] compose such EDPs
in time polynomial to the numbers of answer sets and rules in two programs.

There is also a direct and exponential-time algorithm to construct a program
that has exactly the given collection of answer sets. Given a set of answer sets
{S1, . . . , Sm}, first compute the disjunctive normal form (DNF) S1 ∨ · · · ∨ Sm,
then convert it into the conjunctive normal form (CNF) R1 ∧ · · · ∧ Rn. The set
of facts {R1 ← , . . . , Rn ← } then has the answer sets {S1, . . . , Sm}. This DNF-
CNF transformation produces disjunctive facts only. This is the case even that
the given two programs are ELPs, i.e., programs with no disjunction. Technically,
the resulting program P is head-cycle-free, that is, it contains no positive cycle
through disjuncts appearing in the head of a disjunctive rule [1]. Then, P can
be converted to an ELP by shifting disjuncts in the head of a rule to the body
as NAF-literals in every possible way as leaving one in the head.

4 Generality Relations Relative to Entailment

In traditional studies on generality in first-order clausal theories, the amount
of information brought by a program has been measured by the set of logical
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formulas entailed by the program. That is, given two monotonic programs P
and Q, P is considered more general than Q if P logically entails more formulas
than Q [8]. On the other hand, we have defined the two notions of general-
ity for nonmonotonic programs in terms of answer sets. Here, we will connect
the generality relations over answer sets with skeptical and credulous entail-
ment in answer set programming. As a result, we will see that our notions of
two generality orderings are also reasonable from the viewpoint of entailment
relations.

We first review skeptical and credulous entailment in answer set programming.

Definition 4.1. Let P be a program and L a literal. Then, L is a skeptical
consequence of P if L is included in every answer set of P . L is a credulous
consequence of P if L is included in some answer set of P . The set of skeptical
(resp. credulous) consequences of P is denoted as skp(P ) (resp. crd(P )).

Proposition 4.1. If P is a consistent program, then

skp(P ) =
⋂

S∈A(P )

S, crd(P ) =
⋃

S∈A(P )

S.

If P is incoherent, then skp(P ) = Lit and crd(P ) = ∅. If P is contradictory,
then skp(P ) = crd(P ) = Lit.

Example 4.1. Consider P2 and P4 in Example 2.2, where A(P2) = {{p}, {q}} and
A(P4) = {{p, q}}.Then, crd(P2) = crd(P4) = skp(P4) = {p, q}, and skp(P2) = ∅.

The orderings relative to skeptical and credulous entailment relations between
two programs are defined as follows.

Definition 4.2. Let P and Q be EDPs. Then, we write:

P |=skp Q if skp(Q) ⊆ skp(P ),
P |=crd Q if crd(Q) ⊆ crd(P ).

We say P is more general than Q under skeptical entailment if P |=skp Q.
Likewise, P is more general than Q under credulous entailment if P |=crd Q.

For notational convenience, we write P |=s/c Q when distinction between skep-
tical and credulous entailment is not important.

Proposition 4.2. The relation |=s/c is a pre-order on EDP.

As in the case of �/�-generality relations, the pre-order set 〈EDP , |=s/c〉 is turned
into a poset as follows. For any program P ∈ EDP and the equivalence class

[P ]s = { Q ∈ EDP | P |=skp Q, Q |=skp P },

we define
[P ]s �skp [Q]s if P |=skp Q,
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and denote the equivalence classes from 〈EDP , |=skp〉 as Pskp. The relation �crd

and the equivalence classes Pcrd are defined in the same way, and we write �s/c

and Ps/c to represent two cases together. Then, the relation �s/c is a partial
order on Ps/c.

Proposition 4.3. The poset 〈Ps/c, �s/c〉 constitutes a complete lattice.

Proof. We prove for 〈Pskp, �skp〉. The result for 〈Pcrd, �crd〉 is shown in a similar
manner. For programs P1 and P2, there is a program P3 such that skp(P3) =
skp(P1) ∪ skp(P2). (An instance of such a program is P3 = { L ← | L ∈
skp(P1) ∪ skp(P2) }.) Then, [P3]s becomes the lub of [P1]s and [P2]s. On the
other hand, for programs P1 and P2, there is a program P4 such that skp(P4) =
skp(P1) ∩ skp(P2). Then, [P4]s becomes the glb of [P1]s and [P2]s. The top
element of 〈Pskp, �skp〉 is the class of incoherent EDPs and the bottom element
of 〈Pskp, �skp〉 is [∅]. ��

Now, we relate the �- and �-generality relations with the generality relations
under skeptical and credulous entailment.

Theorem 4.1. Let P and Q be EDPs. Then, the following two hold.

(1) If P |=� Q then P |=skp Q.
(2) If P |=� Q then P |=crd Q.

Proof. (1) Assume that P |=� Q. If P is inconsistent, then skp(P ) = Lit and
thus P |=skp Q. Suppose that P is consistent and L ∈ skp(Q). Then, L ∈ T for
every answer set T ∈ A(Q). By P |=� Q, for any S ∈ A(P ), there is an answer
set T ′ ∈ A(Q) such that T ′ ⊆ S. Since L ∈ T ′, L ∈ S too. That is, L ∈ skp(P ).
Hence, P |=skp Q.

(2) Assume that P |=� Q. If P is incoherent, then P is in the bottom element
of 〈P�, ��〉, and hence Q is too. Then, crd(P ) = crd(Q) = ∅ and thus P |=crd Q.
Else if P is contradictory, then crd(P ) = Lit and thus P |=crd Q. Suppose that
P is consistent and L ∈ crd(Q). Then, L ∈ T for some answer set T ∈ A(Q). By
P |=� Q, there is an answer set S ∈ A(P ) such that T ⊆ S. Hence, L ∈ S and
thus L ∈ crd(P ). That is, P |=crd Q. ��

Theorem 4.1 tells us that, (1) the more �-general a program is, the more it entails
skeptically, and that (2) the more �-general a program is, the more it entails
credulously. That is, the Smyth and Hoare orderings over programs reflect the
amount of information by skeptical and credulous entailment, respectively. The
converse of each property in Theorem 4.1 does not hold in general.

Example 4.2. For Example 4.1, P4 |=� P2 and P4 |=� P2. Correspondingly,
skp(P2) ⊂ skp(P4) and crd(P2) = crd(P4), which verify Theorem 4.1.

On the other hand, crd(P2) = crd(P4) also implies P2 |=crd P4, but P2 �|=� P4.
Similarly, for the program P6 = ∅, we have skp(P6) = ∅ = skp(P2). Then,
P6 |=skp P2, but P6 �|=� P2.
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By Theorem 4.1, the relation |=�/� is a refinement of the relation |=s/c, re-
spectively. Comparing these two kinds of ordering relations, we claim that |=�/�

is more useful than |=s/c as generality criteria. This is because each equiva-
lence class [P ] ∈ P�/� is the set of programs which are weakly equivalent to
P (Theorem 2.1), although there is no such a simple property for the equiva-
lence classes Ps/c. For Example 4.2, crd(P2) = crd(P4) but A(P2) �= A(P4), and
skp(P2) = skp(P6) but A(P2) �= A(P6).

The next theorem presents interesting relationships between mubs/mlbs under
the generality |=�/� and skeptical/credulous entailment.

Lemma 4.1. Let P1 and P2 be EDPs.

(1) If Q is an mub of P1 and P2 in 〈EDP , |=�〉 then skp(Q) = skp(P1)�skp(P2).
(2) If Q is an mlb of P1 and P2 in 〈EDP , |=�〉 then skp(Q) = skp(P1)∩skp(P2).
(3) If Q is an mub of P1 and P2 in 〈EDP , |=�〉 then crd(Q) = crd(P1)∪crd(P2).
(4) If Q is an mlb of P1 and P2 in 〈EDP , |=�〉 then crd(Q) = crd(P1)∩ crd(P2).

Proof. An mub/mlb of two programs under each ordering is given by Theo-
rem 3.1. Then, (1) can be proved by [14, Proposition 3.5(2)], (2) can be proved
by [13, Proposition 3.1-1(b)], (3) can be proved by [13, Proposition 3.1-1(a)],
and (4) can be proved by [15, Proposition 5(3)]. ��

Theorem 4.2. Let P1 and P2 be EDPs.

(1) An mub of P1 and P2 in 〈EDP , |=�〉 is an mub of P1 and P2 in 〈EDP , |=skp〉.
(2) An mlb of P1 and P2 in 〈EDP , |=�〉 is an mlb of P1 and P2 in 〈EDP , |=skp〉.
(3) An mub of P1 and P2 in 〈EDP , |=�〉 is an mub of P1 and P2 in 〈EDP , |=crd〉.
(4) An mlb of P1 and P2 in 〈EDP , |=�〉 is an mlb of P1 and P2 in 〈EDP , |=crd〉.

Proof. Each mub/mlb of P1 and P2 in 〈EDP , |=s/c〉 satisfies each equation (1)
to (4) in Lemma 4.1. Then each property holds by Lemma 4.1. ��

5 Strong Generality Relations over Logic Programs

In the previous sections, we have seen that the relation |=�/� is useful for de-
termining the degree of generality of EDPs. However, because �/�-generality is
determined solely by the answer sets of each program, sometimes the criteria is
not suitable for applications in dynamic domains. For example, for ELPs P =
{ p ← not q } and Q = { p ← q }, we have P |=� Q. Then, adding R = { q ← } to
both programs makes the results in reverse order, i.e., Q ∪ R |=� P ∪ R. In this
section, we will thus introduce context-sensitive notions of generality.

Definition 5.1. Let P and Q be programs. P is strongly more �-general than Q
(written P �� Q) if P ∪ R |=� Q ∪ R for any program R. Similarly, P is strongly
more �-general than Q (written P �� Q) if P ∪ R |=� Q ∪ R for any program R.

We write ��/� to represent both �� and �� together. It is easy to see that strong
�/�-generality implies �/�-generality.
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Proposition 5.1. Let P and Q be EDPs. If P ��/� Q then P |=�/� Q.

Strong �/�-generality can be contrasted with the notion of strong equivalence
[6] in answer set programming. In fact, we have the following correspondence
between strong generality and strong equivalence.

Theorem 5.1. Let P and Q be EDPs. Then, the following three are equivalent:

(1) P �� Q and Q �� P ;
(2) P �� Q and Q �� P ;
(3) P and Q are strongly equivalent.

Proof. P ��/� Q and Q ��/� P
iff P ∪ R |=�/� Q ∪ R and Q ∪ R |=�/� P ∪ R for any program R
iff P ∪ R and Q ∪ R are weakly equivalent for any program R (by Theorem 2.1)
iff P and Q are strongly equivalent. ��

Example 5.1. Consider the four EDPs in Example 2.2. Then, P1 �� P2 �� P3
holds. However, P4 �� �P1 (take R = { q ← p } then P1 ∪ R is incoherent while
P4 ∪ R = P4, hence P4 ∪ R �|=� P1 ∪ R), P4 �� �P2 (take R′ = { q ← p, p ← q }
then P2 ∪ R′ is incoherent while P4 ∪ R′ = P4, hence P4 ∪ R′ �|=� P2 ∪ R′),
P3 �� �P2 (take R′ above then P2 ∪ R′ is incoherent while P3 ∪ R′ is consistent,
hence P3 ∪R′ �|=� P2 ∪R′), and P4 �� �P3 (take R′′ = { ← not p, ← not q } then
P3 ∪ R′′ is incoherent while P4 ∪ R′′ is consistent, hence P4 ∪ R′′ �|=� P3 ∪ R′′).

On the other hand, P3 �� P2 �� P1 holds under the relation ��.

In Example 5.1, the two weakly equivalent programs P2 and P3 are not strongly
equivalent, and thenP2�

�P3 butP3 �� �P2. This fact canbe intuitively explained as
follows. P2 = { p ← not q, q ← not p } is more informative than P3 = { p; q ← }
in the sense that the derivation of p (or q) depends on the absence of q (or p) in P2.
However, no such information is obtained in P3 so that we have a chance to extend
the contents by adding R′ = { q ← p, p ← q } to P3, which is impossible for P2.
On the other hand, under the relation ��, we have P3 �� P2 but P2 �� �P3. This is
because any incoherent program becomes a top element �� under ��, while it is a
bottom element ⊥� under ��. In this regard, the next proposition gives a necessary
condition for strong generality.

Proposition 5.2. Let P and Q be EDPs.

(1) If P �� Q then A(Q ∪ R) = ∅ implies A(P ∪ R) = ∅ for any EDP R.
(2) If P �� Q then A(P ∪ R) = ∅ implies A(Q ∪ R) = ∅ for any EDP R.

Proposition 5.3. Both 〈EDP , ��〉 and 〈EDP , ��〉 are pre-ordered sets.

As in the case of �/�-generality relations, from the pre-order set 〈EDP , ��/�〉,
a poset can be induced over the equivalence classes as usual. This poset also
constitutes a complete lattice, but we omit the detail in this paper.
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6 Discussion

Theories of generality relations over first-order clauses have been studied in the
field of inductive logic programming [8,9,10]. These studies mainly focus on the
generality relationship between two individual clauses and a generality order is
introduced over a set of clauses. By contrast, we considered generality relations
between programs. Moreover, the main contribution of this paper is a theory of
generality relations in nonmonotonic logic programs, which contain incomplete
information. The generality theory developed in this paper is useful for compar-
ing the amount of information between such programs. To our best knowledge,
there has never been a study on generality relations over nonmonotonic logic
programs except [12]. Sakama [12] introduces an ordering over default theories
and nonmonotonic logic programs. He orders ELPs based on a ten-valued logic,
which is different from the domain-theoretic appraoch in this paper.

Computing mubs and mlbs of two programs in this paper is closely related
to coordination, composition and consensus in multi-agent systems, which have
been studied by Sakama and Inoue [13,14,15] (see Section 3.3). Coordination [13]
is realized by accomodating different beliefs of individual agents. This is done
by collecting answer sets of each program. On the other hand, composition [14]
is realized by merging different answer sets of each programs, and consensus
[15] is realized by extracting common beliefs from different answer sets of each
program. The results of this paper indicate that our generalization theory can
serve as a theoretical ground for formalizing social behavior of multiple agents.

The Smyth and Hoare orderings were proposed in domain theory, which is
concerned with mathematical structures to formalize the denotational seman-
tics of programming languages [11,16,4]. The recursive, concurrent and non-
deterministic nature of programming constructs have been modeled on these
order-theoretic powerdomains. In this viewpoint, answer set programming also
imposes non-determinism, and we thus regard that domain theory is suitable to
analyze structural properties of answer sets. However, there is only a few work on
domain-theoretic foundations on logic programming, and in particular, no one
has proposed a domain-theoretic method to compare the amount of information
brought by a logic program. Zhang and Rounds [17] represent the semantics of
disjunctive logic programs on Scott’s information systems using Smyth power-
domain. In contrast to our work, Zhang and Rounds are concerned with the
semantics of individual programs, and do not consider comparison of multiple
programs in powerdomains. Eiter et al. [2] have proposed a framework for com-
paring programs with respect to binary relations on powersets of the projected
answer sets of the programs, but relations in their framework are limited to
equivalence and inclusion, and generality is not taken into account.

Finally, it should be noted that our framework to compare programs in Sec-
tion 2.2 is farily general, so that its applicability is not only limited to answer
set programming. In fact, A(P ) for a program P in Definition 2.2 can be given
by any semantics of P as long as it is defined as a subset of Lit .

Several issues are left open. Because we have developed the theory of gener-
ality relations from the semantical viewpoint, exploring the syntactical counter-
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part is an important future topic. For example, construction of a more (or less)
(strongly) �/�-general program of a given program by a syntactical manipulation
is useful for generalizing or specializing a program in inductive logic program-
ming. For another issue, strong generality in the current form seems too strong,
and it must be meaningful to relax its context-dependent generality condition
from one with respect to all EDPs to one with respect to a subclass of EDPs.
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