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Abstract. Abductive logic programming has been widely used to declar-
atively specify a variety of problems in AI including updates in data and
knowledge bases, belief revision, diagnosis, causal theory, and default rea-
soning. One of the most significant issues in abductive logic programming
is to develop a reasonable method for knowledge assimilation, which in-
corporates obtained explanations into the current knowledge base. This
paper offers a solution to this problem by considering disjunctive expla-
nations whenever multiple explanations exist. Disjunctive explanations
are then to be assimilated into the knowledge base so that the assimilated
program preserves all and only minimal answer sets from the collection
of all possible updated programs. We describe a new form of abduc-
tive logic programming which deals with disjunctive explanations in the
framework of extended abduction. The proposed framework can be well
applied to view updates in disjunctive databases.

1 Introduction

The task of abduction is to infer explanations accounting for an observation.
In general, we may encounter multiple explanations for the given observation.
When there are multiple explanations of G, we observe that the disjunction of
these explanations also accounts for G. In this paper, we formalize this idea by
extending the notion of explanation to more general one than the traditional
framework of abductive logic programming (ALP). Suppose that we are given
the background knowledge K and a set of abducibles A. Then, each set E of
instances of elements from A satisfying that (i) K ∪ E |= G and (ii) K ∪ E is
consistent, is called an elementary explanation in this paper. Then, any disjunc-
tion of elementary explanations is called an explanation. The reason why we use
the term “explanation” for a disjunction of (elementary) explanations is that if
{e1} and {e2} are (elementary) explanations of G then, in first-order logic or
logic programming with the answer set semantics, e = e1 ∨ e2 satisfies that (i)
K ∪ {e} |= G and (ii) K ∪ {e} is consistent.

The use of disjunctive explanations is quite natural when the background



knowledge K is represented in disjunctive logic programs. Also, disjunctive ex-
planations are useful in various applications involving abduction. For example,

– Weakest explanations. In abduction, we usually seek for least presumptive or
weakest explanations. Such an explanation is often called a weakest sufficient
condition [22]. When {e1} and {e2} are minimal elementary explanations of
G, where the minimality is defined in terms of the set inclusion relation, each
explanation {ei} (i = 1, 2) is most preferred in traditional formalizations of
abduction because {ei} is weaker than any non-minimal explanation like
{e1, e2}, i.e., {e1, e2} |= ei. However, the disjunctive explanation {e1 ∨ e2} is
much weaker, i.e., {ei} |= e1 ∨ e2. For another example, when {a, b} and {c}
are the two minimal elementary explanations, {a ∨ c, b ∨ c} is the weakest
explanation because we see that (a ∧ b) ∨ c ≡ (a ∨ c) ∧ (b ∨ c).

– Skeptical reasoning and minimization. In query answering from circumscrip-
tion [11], we often need disjunctive explanations. For example, if both ¬ab(a)
and ¬ab(b) credulously explain g and the clause ab(a)∨ab(b) can be entailed
from the background theory, then the disjunction ¬ab(a) ∨ ¬ab(b) skepti-
cally explains g. A minimization principle with disjunctive explanations is
also employed in abduction from causal theories [20].

– Negative (anti-)explanation and contraction of hypotheses. In extended ab-
duction [14], we may want to remove abducible facts from the background
theory. For example, suppose that the program is given as:

g ← not p,

p← a,

p← b,

a; b ,

and the abducibles are given as {a, b}. Then, to explain g, it is necessary to
remove the disjunction a; b from the program. However, the previous frame-
work of extended abduction [14, 13] cannot do that, because only instances
of elements from the abducibles can be manipulated. Here, removing {a} or
{b} or {a, b} cannot be successful because neither a nor b is in the program.

– Knowledge base update. Adapting alternative solutions for an update request
to the background theory usually results in multiple alternative new states.
The disjunction of these solutions offers a solution representing every possible
change in a single state [5, 6, 25]. This technique reduces the size of knowledge
bases through a sequence of updates and keeps only one current knowledge
base at a time.

The last application—knowledge base update—is particularly important when
we want to assimilate explanations into our current knowledge base. While
knowledge assimilation is one of the most significant problems in ALP [19, 17],
not much work has been reported so far. This paper offers a solution to this
problem by assimilating disjunctive explanations into a knowledge base. We also
introduce disjunctive explanations into the framework of extended abduction [14],
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where both addition and removal of hypotheses are allowed to explain or unex-
plain an observation. When there are multiple preferred explanations involving
removal of hypotheses, assimilating them into one knowledge base is much more
difficult than in the case of normal abduction which only adds hypotheses.

It is known that extended abduction can be used to formalize various up-
date problems in AI and databases [14, 16, 26]. That is, an insertion/deletion of
a fact G into/from a database is accomplished by a minimal explanation/anti-
explanation of G. Then, the notion of disjunctive explanations in this paper can
also be applied to update problems in databases. In particular, the view update
problem in disjunctive databases, i.e., databases possibly containing disjunctions
which represent indefinite or uncertain information, can also be realized within
the proposed framework. When we build a database in real-life situations, a
database is likely to include such disjunctive facts. Developing an update tech-
nique in disjunctive databases is therefore important from practical viewpoints.
However, disjunctive databases are more expressive than Datalog [4], and view
updates in disjunctive databases are more difficult than the case of Datalog. In
fact, there are few studies on the subject of updating disjunctive databases and
many problems have been left open. Hence, with our proposed framework, we
can make advances in studies of view updates in disjunctive databases.

The rest of this paper is organized as follows. Section 2 reviews a framework of
disjunctive logic programs and its answer set semantics. Section 3 introduces the
abductive framework considering disjunctive explanations. Section 4 extends our
disjunctive abduction to extended abduction which allows removal of abducibles
from programs. Section 5 discusses related issues, and Section 6 is a summary.
Due to the lack of space, we omit the proofs of theorems in this paper.

2 Disjunctive Programs

A knowledge base or database is represented in an extended disjunctive program
(EDP) [9], or simply called a program, which consists of a finite number of rules
of the form:

L1; · · · ;Ll ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (1)

where each Li is a literal (n ≥ m ≥ l ≥ 0), and not is negation as failure
(NAF). The symbol ; represents a disjunction and is often written also as ∨. A
rule with variables stands for the set of its ground instances. We assume that
function symbols never appear in a program, which implies that a number of
the ground instances of a variable is finite.3 The left-hand side of the rule is
the head , and the right-hand side is the body . A rule with the empty head is an
integrity constraint. Any rule with the empty body H ← is called a fact and is
also written as H without the symbol ←.

Any program K is divided into two parts, K = I(K)∪F(K), where I(K)∩
F(K) = ∅, and I(K) (resp. F(K)) denotes the set of non-fact rules (resp. facts)
3 This assumption is necessary only for later use in representing explanation closures
of an observation in first-order logic (Definition 3.4).
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in K. When we consider a database written as a program, I(K) (resp. F(K))
represents an intensional database (resp. extensional database).

We can consider more general form of programs allowing nested expressions
[21]. See [21] for the definition of answer sets for such nested programs.4 An
EDP is called an extended logic program (ELP) if it contains no disjunction
(l ≤ 1), and an ELP is called a normal logic program (NLP) if every Li is an
atom.

The semantics of a program is given by its answer sets. First, let K be an
EDP without NAF (i.e., m = n) and S ⊆ L, where L is the set of all ground
literals in the language of K. Then, S is an answer set of K if S is a minimal
set satisfying the conditions:

1. For each ground rule L1; · · · ;Ll ← Ll+1, . . . , Lm from K, {Ll+1, . . . , Lm} ⊆
S implies {L1, . . . , Ll} ∩ S �= ∅;

2. If S contains a pair of complementary literals L and ¬L, then S = L.
Second, given any EDP K (with NAF) and S ⊆ L, consider the EDP (without
NAF) KS obtained as follows: a rule L1; · · · ;Ll ← Ll+1, . . . , Lm is in KS if there
is a ground rule of the form (1) from K such that {Lm+1, . . . , Ln}∩S = ∅. Then,
S is an answer set of K if S is an answer set of KS . An answer set is consistent
if it is not L. A program is consistent if it has a consistent answer set. Note that
every answer set S of any EDP is minimal [9], that is, no other answer set S′

of K satisfies that S′ ⊂ S. The set of all answer sets of K is written as AS(K).
For a literal L, we write K |= L if L ∈ S for every S ∈ AS(K).

3 Disjunctions in Normal Abduction

An abductive program is a pair 〈K,A〉, where both K and A are EDPs. Each
element of A and its any instance is called an abducible. When a rule is an
abducible, it is called an abducible rule. Such an abducible rule can be associated
with a unique literal called the name [12]. Then, with this naming technique, we
can always assume in this paper that the abducibles A of an abductive program
〈K,A〉 is a set of literals. Moreover, we assume without loss of generality that,
any rule from K having an abducible in its head is always a fact consisting of
abducibles only.5 In abduction, we are given an observation G to be explained
or unexplained. Without loss of generality, such an observation is assumed to be
a non-abducible ground literal [15].

We firstly consider normal abduction, and later in Section 4 extend our frame-
work by considering extended abduction [14].
4 Nested expressions are necessary in this paper only because we will later consider
the answer sets of a program containing DNF formulas called explanation closures
(Theorem 3.4).

5 A similar assumption is usually used in literature, e.g., [17]. If there is a fact con-
taining both an abducible a and a non-abducible or there is a rule containing an
abducible a in its head and a non-empty body, then such an abducible a is made
a non-abducible by introducing a rule a ← a′ with a new abducible a′ and then
replacing a with a′ in every fact consisting abducibles only.
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Definition 3.1 Let 〈K,A〉 be an abductive program and G an observation. A
set E is an elementary explanation of G (wrt 〈K,A〉) if

1. E is a set of ground instances of elements from A,
2. K ∪ E |= G, and
3. K ∪ E is consistent.

Note here that we use the term “elementary explanation” instead of just
calling “explanation”. The latter term is reserved for the next definition.

Definition 3.2 Any disjunction of elementary explanations of G is called a
(disjunctive) explanation of G.

By definition, elementary explanations are also explanations. Disjunctive ex-
planations deserve to be called “explanations” as the next proposition holds.

Proposition 3.1 Let E be a (disjunctive) explanation of G wrt 〈K,A〉. Then,
K ∪ E |= G and K ∪ E is consistent.

We provide an entailment relationship between programs/explanations as
follows. Let R and R′ be sets of formulas with nested expressions [21]. We write
R |= R′ if for any S ∈ AS(R), there exists S′ ∈ AS(R′) such that S′ ⊆ S. In
this case, we say that R′ is weaker than R. For example, {a, b} |= {a} |= {a; b}.
We also say that R and R′ are equivalent if AS(R) = AS(R′).

Definition 3.3 An (elementary/disjunctive) explanation E of G is minimal (or
weakest) if for any (elementary/disjunctive) explanation E′ of G, E |= E′ implies
E′ |= E.

Note that we assumed that the set of abducibles A consists of literals only.
Then, for elementary explanations E and E′, the relation E |= E′ is equivalent
to E′ ⊆ E. Hence, E is a minimal elementary explanation of G iff no other
explanation of G is a proper subset of E.

We can also define an alternative ordering between explanations. Given an
abductive program 〈K,A〉, we say that an explanation E ofG is less presumptive
than an explanation E′ of G if K ∪E′ |= K ∪E. A least presumptive explanation
is then defined as a minimal element in the less presumptive relation. We also
say that E and E′ are equivalent relative to K if AS(K ∪ E) = AS(K ∪ E′).

Definition 3.4 Let ME(G) be the set of minimal elementary explanations of
G. The explanation closure of G (wrt 〈K,A〉) is the disjunctive explanation:

∨

E∈ME(G)

E .

The explanation closure gives the least presumptive explanation for the ob-
servation. To verify this fact, we consider an alternative formalization of abduc-
tion with the enlarged hypothesis space which consists of disjunctive hypotheses.
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Given an abductive program 〈K,A〉, the enlarged abducible set, written D(A),
consists of every disjunction of abducibles from A. Then, we can define an abduc-
tive program 〈K,D(A) 〉, in which we can abduce any disjunction of abducibles
to explain an observation. Of course, we can also define elementary and dis-
junctive explanations for the abductive program 〈K,D(A) 〉. However, weakest
elementary explanations wrt 〈K,D(A) 〉 may contain redundant abducibles as
disjuncts. For instance, when K is a program consisting of two rules:

p← a,

← b,

and A = {a, b}, as p’s explanations, {a; b} is weaker than {a}. To adopt {a} as a
preferred explanation of p, we need the notion of least presumptive explanations.
In this case, {a} and {a; b} are equivalent relative to K.

Theorem 3.2 If a formula F is the explanation closure of G wrt 〈K,A〉, then
F is equivalent (relative to K) to a least presumptive elementary explanation of G
wrt 〈K,D(A) 〉. Conversely, if E is a least presumptive elementary explanation
of G wrt 〈K,D(A) 〉, then E is equivalent (relative to K) to the explanation
closure of G wrt 〈K,A〉.

Corollary 3.3 The least presumptive elementary explanation of G wrt 〈K,D(A) 〉
is unique up to the equivalence relation relative to K, and is equivalent to the
explanation closure of G wrt 〈K,A〉.

Example 3.1 Let K be the program:

p;¬q ← a, b,

p← r, b,

q ← c, not r,

r ← d, not q.

Also let the abducibles be A = {a, b, c, d}. Then, the minimal elementary expla-
nations of p wrt 〈K,A〉 is:ME(p) = {{a, b, c}, {b, d}}. The explanation closure
of p is thus

F = (a, b, c); (b, d).

On the other hand, the least presumptive elementary explanation of p wrt
〈K,D(A) 〉 is given by

E = {a; d, b, c; d}.
In fact, AS(K ∪ E) = AS(K ∪ {F}) = {{a, b, c, p, q}, {b, d, p, r}}.

The next theorem states that the explanation closure F of G wrt 〈K,A〉 ex-
actly reflects all the possible minimal changes from the original program K with
the minimal elementary explanations ME(G) wrt 〈K,A〉. With this property,
we can say that all possible explanations are assimilated into the current pro-
gram so that the resulting program K ∪ {F} is uniquely determined. Note here
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that F is a disjunction of conjunctions of abducibles, that is, a DNF formula. If
necessary, we can convert F into an equivalent CNF formula (by Theorem 3.2)
which is in the form of a program. The merit of introduction of explanation
closures is that we can just stay in the traditional abductive framework where
the abducibles are given as literals and hence it is not necessary to consider the
enlarged abducible set for computing weakest explanations.

In the following, for a set S of sets of literals, we denote the set of minimal
elements in S as μS, i.e., μS = { I ∈ S | there is no J ∈ S such that J ⊂ I }.

Theorem 3.4 Let F be the explanation closure of G wrt 〈K,A〉, and ME(G)
be the set of minimal elementary explanations of G wrt 〈K,A〉. Then,

AS(K ∪ {F}) = μ
⋃

E∈ME(G)

AS(K ∪ E).

Note in Theorem 3.4 that the program augmented with the explanation clo-
sure K ∪ {F} preserves all and only minimal answer sets from the collection
of programs with individual minimal elementary explanations. In other words,
non-minimal answer sets produced by the minimal elementary explanations to-
gether with K are lost in AS(K ∪ {F}). This is because the program K ∪ {F}
is an EDP, of which any answer set is minimal. For example, when the program
K is

a; b ,

p← b,

p← c,

and A = {a, b, c} is the abducibles, we haveME(p) = {b, c}. Then,
AS(K ∪ {b}) ∪ AS(K ∪ {c}) = {{b, p}, {a, c, p}, {b, c, p}}.

On the other hand,

AS(K ∪ {b; c}) = {{b, p}, {a, c, p}}.
When we consider the skeptical entailment, non-minimal answer sets are not
useful and eliminating them does not change the consequences that are true in
all answer sets.

4 Disjunctions in Extended Abduction

In this section, we extend the notion of disjunctive explanations to allow for
removal of abducible disjunctions from programs.

We firstly give a definition for extended abduction [14, 16, 26, 13]. The fol-
lowing definition is based on [13].
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Definition 4.1 Let 〈K,A〉 be an abductive program.

1. A pair (P,N) is a scenario for 〈K,A〉 if P andN are sets of ground instances
of elements from A and (K \N) ∪ P is a consistent program.

2. Let G be a ground literal.
(a) A pair (P,N) is an elementary explanation of G (wrt 〈K,A〉) if (P,N)

is a scenario for 〈K,A〉 such that (K \N) ∪ P |= G.
(b) A pair (P,N) is an elementary anti-explanation of G (wrt 〈K,A〉) if

(P,N) is a scenario for 〈K,A〉 such that (K \N) ∪ P �|= G.
(c) An elementary (anti-)explanation (P,N) of G is minimal if for any el-

ementary (anti-)explanation (P ′, N ′) of G, P ′ ⊆ P and N ′ ⊆ N imply
P ′ = P and N ′ = N .

Thus, to explain or unexplain observations, extended abduction not only in-
troduces hypotheses to a program but also removes them from it. On the other
hand, abduction in Definition 3.1 is called normal abduction, which only intro-
duces hypotheses to explain observations, and is a special case of extended ab-
duction. That is, E is an explanation of G wrt 〈K,A〉 (under normal abduction)
iff (E, ∅) is an explanation of G wrt 〈K,A〉 (under extended abduction).

4.1 Problem in Combining Removed Hypotheses

It is not obvious to extend the notion of elementary (anti-)explanations in ex-
tended abduction to take disjunctions of multiple (anti-)explanations. The diffi-
culty lies in the following question: when there are more than one way to remove
hypotheses in order to (un)explain an observation, how can we construct a com-
bined (anti-)explanations so that the resulting program reflects the semantics
for every possible minimal change of the current program? We illustrate this
difficulty with the following example.

Example 4.1 [10, Example 3.4] 6 Let K be the program

p← a, b,

p← e,

p← q, c,

q ← a, d,

a ,

b; d ,

b; e .

Suppose that the abducibles are A = {a, b, c, d, e}. The unique minimal elemen-
tary anti-explanations of p wrt 〈K,A〉 is

(P1, N1) = (∅, {a}).
6 Example 4.1 was originally described in the context of view updates of disjunctive
databases in [10]. Here, we modified it for the use in extended abduction.
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On the other hand, there are two minimal elementary anti-explanations of p wrt
〈K,D(A) 〉: one is (P1, N1), and the other is

(P2, N2) = (∅, {b; e}).

To express these two changes in one state, Grant et al. [10] actually construct the
two programs by reflecting these two anti-explanations on the fact part F(K):

K1 = I(K) ∪ { b; d, b; e },
K2 = I(K) ∪ { a, b; d }.

Then, [10] takes the disjunction of these fact parts, i.e., F(K1) ∨ F(K2), and
converting the resulting DNF formula into CNF, yielding

((b ∨ d) ∧ (b ∨ e)) ∨ (a ∧ (b ∨ d)) = (b ∨ d) ∧ (a ∨ b ∨ e).

That is, the new program is computed as

K ′ = I(K) ∪ { b; d, a; b; e }.

By computing the difference between K and K ′, an anti-explanation of p would
be expressed as

(P ′, N ′) = ({ a; b; e }, { a, b; e }).
Unless we follow this expensive procedure, it is difficult to compose the last sce-
nario (P ′, N ′) directly from the minimal elementary anti-explanations, (P1, N1)
and (P2, N2), of p wrt 〈K,D(A) 〉. Moreover, it is impossible to construct (P ′, N ′)
only from the unique minimal elementary explanation (P1, N1) of p wrt 〈K,A〉.

From the above example, one may expect that two (anti-)explanations, (P1, N1)
and (P2, N2), can be combined by constructing a new (anti-)explanation:

({P1 ∨ P2, N1 ∨N2}, N1 ∪N2).

Unfortunately, this is not the case as the next example shows.

Example 4.2 Let K be the program

p← a, not b,

p← a, not c,

b,

c,

and the abducibles be A = {a, b, c}. The two minimal elementary explanations
of p is ({a}, {b}) and ({a}, {c}). Combining these two in the above way results in
(P,N) = ({ a, b; c }, { b, c }). However, this scenario cannot be an explanation
of p because (K \N) ∪ P �|= p.
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4.2 From Extended Abduction to Normal Abduction

From the discussion in Section 4.1, we had better consider an alternative way to
combine multiple (anti-)explanations in extended abduction. In [13], extended
abduction is shown to be reduced to normal abduction. Here, we use this method
to translate removal of abducibles from programs to addition of abducibles to
programs. Recall that, without loss of generality, the set of abducibles A can be
assumed to be a set of literals and there is no rule which has a non-empty body
and a head containing abducible literals. Under this assumption, the translation
ν shown in [13] is simplified as follows. For addition of an abducible literal, we
do not have to give it a name and leave it as it is. For removal of an abducible
literal a, we give a name to a through NAF by not del(a). Then, deletion of an
abducible a is realized by addition of del(a) to the program.

For an abductive program 〈K,A〉, the program ν(K,A) = 〈 ν(K), ν(A) 〉 is
defined as follows.

ν(K) = (K \ A) ∪ { a← not del(a) | a ∈ K ∩ A },
ν(A) = A ∪ { del(a) | a ∈ K ∩ A}.

Theorem 4.1 [13, Theorem 1] (P,N) is a minimal elementary explanation of G
wrt 〈K,A〉 under extended abduction iff E is a minimal elementary explanation
of G wrt ν(K,A) under normal abduction, where P = {a | a ∈ E ∩ A} and
N = {a | del(a) ∈ E}.

The above theorem presents that all minimal elementary explanations are
computable by normal abduction from ν(K,A). For anti-explanations, the next
theorem shows that ν(K,A) preserves every minimal elementary anti-explanation
of 〈K,A〉 in the form of a scenario (E, ∅). Namely, we do not have to consider
removal of hypotheses in a scenario. Then, to compute these anti-explanations,
we can utilize the relationship between explanations and anti-explanations (see
[13, Theorem 2]).

Theorem 4.2 (P,N) is a minimal elementary anti-explanation of G wrt 〈K,A〉
iff (E, ∅) is a minimal anti-explanation of G wrt ν(K,A), where P = {a | a ∈
E ∩ A} and N = {a | del(a) ∈ E}.

4.3 Disjunctive (Anti-)Explanations

Now, we are ready to compose disjunctive explanations for extended abduction.
Firstly, we extend Definition 4.1 for extended abduction by allowing removal of
disjunctive hypotheses from a program.

Definition 4.2 Let 〈K,A〉 be an abductive program, G a ground literal.

1. A pair (P,N) is a d-scenario for 〈K,A〉 if P is a set of ground instances of
elements from A and N is a set of ground instances of elements from D(A)
such that (K \N) ∪ P is a consistent.
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2. A d-scenario (P,N) is an elementary d-explanation of G (wrt 〈K,A〉) if
(K \N) ∪ P |= G.

3. A d-scenario (P,N) is an elementary d-anti-explanation of G (wrt 〈K,A〉)
if (K \N) ∪ P �|= G.

4. An elementary d-(anti-)explanation (P,N) of G is minimal if for any ele-
mentary d-(anti-)explanation (P ′, N ′) of G, P |= P ′ and N |= N ′ imply
P ′ |= P and N ′ |= N .

In the above definition, we allow removal of disjunctive hypotheses from the
enlarged abducible set D(A), but addition of hypotheses is allowed only from
the literal abducibles A. This asymmetry is due to our intention that hypotheses
to be added should be made disjunctive just in the same way as normal abduc-
tion although hypotheses to be removed could only be translated into normal
abduction through NAF of the form not del( ). Note also that the minimality of
d-(anti-)explanations is now defined through the entailment relationship.

For translating abducible removal into abducible addition, we slightly modify
the mapping ν for preserving minimal elementary (anti-)explanations, and con-
sider the mapping νd as follows. For an abductive program 〈K,A〉, the program
νd(K,A) = 〈 νd(K), νd(A) 〉 is defined as follows.

νd(K) = (K \ D(A)) ∪ { a← not del(a) | a ∈ K ∩ D(A) },
νd(A) = A ∪ { del(a) | a ∈ K ∩ D(A) }.

Note that the difference between ν and νd is that the naming technique is
applied to the enlarged abducible set D(A) instead of the original abducibles
A only. The new abducible set νd(A) is, however, defined with A without con-
sidering disjunctive hypotheses. This is because we do not have to consider any
removal of hypotheses for νd(K,A) so that we can define the notions of (dis-
junctive) explanations, minimal explanations, and explanation closures in the
same way as Definitions 3.2, 3.3, and 3.4 for normal abduction. Similarly, we
can define the closure formula for anti-explanations as follows.

Definition 4.3 The anti-explanation closure of G (wrt 〈K,A〉) is the disjunc-
tive explanation: ∨

(E,∅)∈MEAν(G)

E,

whereMEAν(G) is the set of all minimal elementary anti-explanations of G wrt
νd(K,A).

The following theorems show that the translation νd preserves the minimal
answer sets from the program augmented with any minimal elementary d(-anti)-
explanation. Here, for a program K containing literals of the form del( ), we will
write:

AS−del(K) = μ {S ∩ LK | S ∈ AS(K) },
where LK denotes the set of literals in the language of K not containing any
literal of the form del( ). Note that we need to select the minimal elements from
the right hand side. This is because eliminating all literals of the form del( )
from each answer set may produce a literal set that properly includes others.

11



Theorem 4.3 Let F be the explanation closure of G wrt 〈K,A〉, andMEd(G)
be the set of minimal elementary d-explanations of G wrt 〈K,A〉. Then,

AS−del(νd(K) ∪ {F}) = μ
⋃

(P,N)∈MEd(G)

AS((K \N) ∪ P ).

Theorem 4.4 Let H be the anti-explanation closure of G wrt 〈K,A〉, and
MEAd(G) be the set of minimal elementary d-anti-explanations of G wrt 〈K,A〉.
Then,

AS−del(νd(K) ∪ {H}) = μ
⋃

(P,N)∈MEAd(G)

AS((K \N) ∪ P ).

Example 4.3 (cont. from Example 4.1) The fact part I(K) = K ∩ D(A) =
{ a, b; d, b; e } is translated into

a← not del(a),

b; d← not del(b; d),

b; e← not del(b; e).

The two minimal elementary anti-explanations of p wrt νd(K,A) are ({del(a)}, ∅)
and ({del(b; e)}, ∅), which respectively correspond to the two d-anti-explanations
of p wrt 〈K,A〉, (P1, N1) = (∅, {a}) and (P2, N2) = (∅, {b; e}). Then, the anti-
explanation closure of p is H = del(a); del(b; e). Assimilating this formula into
the program, we obtain the new program K ′ = νd(K)∪{del(a); del(b; e)}. Then,

AS−del(K ′) = {{b}, {d, e, p}, {a, d, q}}.
Example 4.4 (cont. from Example 4.2) The fact part F(K) is translated into

b← not del(b),

c← not del(c).

The two minimal elementary explanations of p wrt νd(K,A) are {a, del(b)} and
{a, del(c)}, which respectively correspond to ({a}, {b}) and ({a}, {c}). Then, the
explanation closure is F = (a, del(b)); (a, del(c)). By converting F into CNF, the
minimal explanation of p wrt νd(K,A) is obtained as E = { a, del(b); del(c) }.
Then,

AS−del(νd(K) ∪ E) = {{a, b, p}, {a, c, p}}.

5 Related Work

1. Disjunctive explanations. The idea of taking a disjunction of multiple expla-
nations has appeared at times in the literature of computing abduction, although
no previous work has formally investigated the effect of such disjunctive explana-
tions in depth. Helft et al. [11] define an explanation as a disjunction of elemen-
tary explanations in abduction from first-order theories for answering queries in
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circumscription. Konolige [20] defines a cautious explanation as a disjunction of
all preferred explanations, and uses it to relate consistency-based explanations
with abductive explanations in propositional causal theories. Lin [22] provides
a method to compute weakest sufficient conditions for propositional theories, in
which he constructs the disjunction of elementary explanations obtained from
prime implicates. In ALP, disjunctions of elementary explanations are some-
times obtained in computing abduction through Clark completion [3, 8, 23].
Such procedures are designed for computing normal abduction from hierarchical
or acyclic NLPs. Inoue and Sakama [16] extend this completion method to com-
pute extended abduction. We can use these procedures to compute explanation
closures directly in some restricted classes of logic programs.

2. View updates in disjunctive databases. Although there are some studies on
updating incomplete information in relational databases [1], only a few works
[10, 7] focused on updating disjunctive databases. Grant et al. [10] translate
view updates into a set of disjunctive facts based on expansion of an SLD-tree,
so that updates are achieved by inserting/deleting these disjunctive facts to/from
a database. Their method is correct for stratified programs, but cannot achieve
an insertion of p into a non-stratified EDP K shown in Example 3.1. Fernández
et al. [7] realize view updates in a wide class of EDPs through construction
of minimal models that satisfy an update request. In their algorithm, however,
computation is done on all possible models of the Herbrand base, and how to
compute disjunctive solutions directly from changes of facts was an open problem
in the class of EDPs. We solved this problem by translating extended abduc-
tion to normal abduction without computing all possible models. Furthermore,
updates are performed without using abduction in [10, 7]. Hence, the notion of
disjunctive (anti-)explanations in abduction does not appear in these work.

For non-disjunctive deductive databases, abductive frameworks have been
used to realize view updates. Bry [2] translates abduction into a disjunctive
program and database updates are realized by bottom-up computation on a
meta-program specifying an update procedure. Kakas and Mancarella [18] char-
acterize view updates through abduction in deductive databases. The procedures
in [18, 2] are based on normal abduction and do not consider extended abduction.

3. Knowledge assimilation with abduction. Not much work has been reported
to assimilate obtained multiple explanations into the current knowledge base.
Kakas and Mancarella [19] discussed two ways for handling the problem of mul-
tiple explanations. One is to generate all consistent scenarios accounting for an
observation and work with all of them simultaneously. They suggest to use an
ATMS for this purpose. The other way is to generate one preferred explanation
at a time according to some priority. Since such a choice of explanation could be
wrong in the subsequent observations, they suggest the use of a belief revision
mechanism through a Doyle-style TMS.

Our proposal somewhat differs from Kakas and Mancarella’s two methods.
Our method is similar to the spirit suggested by Fagin et al. [5], which defines
the result of assimilation or updates to be the disjunction of all the possible
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theories with minimal change. This method presents a semantically consistent
picture of theory changes. Rossi and Naqvi [25] optimize this approach by tak-
ing the disjunction of updated extensional databases instead of composing the
disjunction of the whole databases with intensional ones. Grant et al. [10] follow
the same line on view updates in disjunctive databases. An interesting alterna-
tive approach is also suggested by Fagin et al. [6], in which multiple alternative
theories called “flocks” are kept as they are.

6 Summary

This paper has presented a method to construct the weakest explanations and
anti-explanations in normal and extended abduction. For normal abduction, we
formally established the effect of disjunctive explanations, in which all and only
minimal answer sets are preserved for the minimal elementary explanations. We
also presented that the explanation closure is equivalent to a least presumptive
explanation consisting of disjunctive hypotheses. These results imply a practical
merit that computing least presumptive explanations wrt 〈K,D(A) 〉 can easily
be realized by traditional abductive procedures [18, 3, 15, 8, 17, 16] for 〈K,A〉 or
corresponding answer set programming [24] which simulates normal abduction.
That is, the minimal elementary explanations are firstly computed by these
procedures, then the disjunction of them is just composed. We have also applied
these results to extended abduction, and proposed a method to combine multiple
solutions that involve removal of hypotheses.

The notion of disjunctive explanations is quite useful in various applications,
and our method has shed some light on the problem of knowledge assimilation. In
particular, considering view updates in disjunctive databases is generally difficult
in the presence of disjunctive information. Our solution in this paper correctly
achieves view updates in a large class of disjunctive databases.
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