Extended Well-Founded Semantics for
Paraconsistent Logic Programs *

Chiaki Sakama

ASTEM Research Institute of Kyoto
17 Chudoji Minami-machi, Shimogyo, Kyoto 600 Japan
sakama@astem.or. jp

Abstract

This paper presents a declarative semantics of logic programs which
possibly contain inconsistent information. We introduce a multi-valued
interpretation of logic programs and present the extended well-founded
semantics for paraconsistent logic programs. In this setting, a mean-
ingful information is still available in the presence of an inconsistent
information in a program and any fact which is affected by an incon-
sistent information is distinguished from the others. The well-founded
semantics is also extended to disjunctive paraconsistent logic programs.

1 Introduction

Recent studies have greatly enriched an expressive power of logic program-
ming as a tool for knowledge representation. Handling classical negation as
well as negation by failure in a program is one of such extension. An ez-
tended logic program, which is introduced by Gelfond and Lifschitz [GL90],
distinguishes two types of negation and enables us to deal with explicit nega-
tion as well as default negation in a program. An extended logic program
is, however, possibly inconsistent in general, since it contains negative heads
as well as positive ones in program clauses. Practically, an inconsistency
is likely to happen when we build a large scale of knowledge base in such
a logic program. A knowledge base may contain local inconsistencies that
would make a program contradictory and yet it may have a natural intended
global meaning. However, in an inconsistent program, the answer set seman-
tics proposed in [GL90] implies every formula from the program. This is also
the case for most of the traditional logics in which a piece of inconsistent
information might spoil the rest of the whole knowledge base.

*In Proceedings of the 1992 International Conference on Fifth Generation Computer
Systems (FGCS’92), Ohmsha, pp. 592-599, 1992.

To avoid such a situation, the so-called paraconsistent logics have been
developed which are not destructive in the presence of an inconsistent in-
formation [Co74]. From the point of view of logic programming, a possibly
inconsistent logic program is called a paraconsistent logic program. Blair and
Subrahmanian [BS87] have firstly developed a fixpoint semantics of such
programs by using Belnap’s four-valued logic [Be75]. Recent studies such
as [KL89, Fi89, Fi91] have also developed a logic for possibly inconsistent
logic programs and provided a framework for reasoning with inconsistency.
However, from the point of view of logic programming, negation in these
approaches is classical in its nature and the treatment of default negation as
well as classical one in paraconsistent logic programming is still left open.

In this paper, we present a framework for paraconsistent logic program-
ming in which classical and default negation are distinguished. The rest of
this paper is organized as follows. In Section 2, we first present an appli-
cation of Ginsberg’s lattice-valued logic to logic programming and provide
a declarative semantics of paraconsistent logic programs by extending the
well-founded semantics of general logic programs. Then we show how the
extended well-founded semantics isolates an inconsistent information and
distinguishes meaningful information from others in a program. In Section
3, the well-founded semantics is also extended to paraconsistent disjunctive
logic programs. Section 4 discusses related work and Section 5 concludes
this paper.

2 Well-Founded Semantics for Paraconsistent Logic
Programs

2.1 Multi-valued Logic

To present the semantics of possibly inconsistent logic programs, multi-
valued logics are often used instead of the traditional two-valued logic.
Among them, Belnap’s four-valued logic [Be75] is well-known and several
researchers have employed this logic to give the semantics of paraconsistent
logic programs [BS87, K189, Fi89, Fi9l]. In Belnap’s logic, truth values
consist of {t,f, T, L} in which each element respectively denotes true, false,
contradictory, and undefined. Each element makes a complete lattice under
a partial ordering defined over these truth values (figure 1).

To represent nonmonotonic aspect of logic programming, however, we
need extra truth values which represent default assumption. Such a logic
is firstly introduced by Ginsberg [Gi86] in the context of bilattice for de-
fault logic. We use this logic to give the semantics of paraconsistent logic

programs. 1

The set VII = {t,f,dt,df,«, T, L} is the space of truth values in our

1 [KL89] has also suggested the extensibility of their logic for handling defaults by using
Ginsberg’s lattice-valued logic.

Figure 1: Four-valued logic

seven-valued logic. Here, additional elements dt, df, and *, are read as

true by default, false by default, and don’t-care by default, respectively. In

VII, each element makes a complete lattice under the ordering < such that:

Vx € VII,x <x and L <x < T; and for x € {t,f},dx < * < x (figure 2).
A program is a (possibly infinite) set of clauses of the form:

A~ BiAN...ANB,AnotCi A...NnotC,

where m,n > 0, each A, B;(1 < i < m) and C;(1 < j < n) are literals
and all the variables are assumed to be universally quantified at the front of
the clause. In a program, two types of negation are distinguished; hereafter,
— denotes a monotonic classical negation, while not denotes a nonmono-
tonic default negation. A ground clause (resp. program) is a clause (resp.
program) in which every variable is instantiated by the elements of the Her-
brand universe of a program. Also, such an instantiation is called Herbrand
instantiation of a clause (resp. program).

An interpretation I of a program is a function such that I : Hg — VII
where Hp is the Herbrand base of the program. (Throughout of this paper,
Hp denotes the Herbrand base of a program.)

A formula is defined as usual; (i) any literal L or —L is a formula, (ii)
for any literal L, not L and not =L are formulas, and (iii) for any formula F’
and G, VF, dF, FV G, FAG and F < G are all formulas. A formula is
closed if it contains no free variable. Satisfaction of a formula is also defined
as follows.

Definition 2.1 Let P be a program and I be its interpretation. Suppose
I E F denotes that I satisfies a formula F', then:

Figure 2: The logic VII

1. For any atom A € Hp,

(a) I =Aift <I(A),
(b) I E-Aiff X I(A),
(¢c) I EnotAifdf X I(A) =
(d) I not—Aifdt <1(A)

*,
*x,

2. For any closed formula 3F (resp. VF'), I = 3F (resp. I = VF)
if I |= F' for some (resp. every) Herbrand instantiation F” of F.

3. For closed formulas F' and G,

(a) [EFVGifIEForlEG,
(b) IEFAGIfIEFand I EG,
) [EF+GifIEForI£G. O

The ordering < on truth values is also defined between interpretations.
For interpretations Iy and I, I X I iff VA € Hp,[1(A) <X I3(A). An
interpretation [is called minimal, if there is no interpretation J such that
J # I and J < I. An interpretation [is also called least, if I < J for every
interpretation J.

An interpretation [is called a model of a program if every clause in a
program is satisfied in I. Note that in our logic, the notion of model is also
defined for an inconsistent set of formulas. For example, a program { p,—p }
has a model I such that I(p) = T. In particular, an interpretation I of
a program is called consistent if for every atom A in Hp, I(A) # T. A
program is called consistent if it has a consistent model.

2.2 Extended Well-Founded Semantics

The well-founded semantics is known as one of the most powerful semantics
which is defined for every general logic program [VRS88, Pr89]. The well-
founded semantics has also extended to programs with classical negation in
[Pr90], however, it is not well-defined for inconsistent programs in which
inconsistent models are all thrown away. In this section, we reformulate the
well-founded semantics for possibly inconsistent logic programs.

To compute the well-founded model, we first present an interpretation of
a program by a pair of sets of ground literals.

Definition 2.2 For a program P, a pair of sets of ground literals I =<
0; 0 > presents an interpretation of P in which each literal in [is interpreted
as follows:

For a positive literal L,

(i) if L (resp. —L) is in o, L is true (resp. false) in I;

(ii) else if L (resp. —L) isin 6§, L is false by default (resp. true by default)
in I;

(iii) otherwise, neither L nor =L is in o nor §, L is undefined.

In particular, if both L and =L are in o (resp. §), L is contradictory (resp.
don’t-care by default) in I. O

Intuitively, o presents proven facts while § presents default facts, and an
interpretation of a fact is defined by the least upper bound of its truth values
in the pair.

Now we extend the constructive definition of the well-founded semantics
for general logic programs [Pr89] to paraconsistent logic programs.

Definition 2.3 Let P be a program and I =< o;0 > be an interpretation
of P. For sets T and F of ground literals, the mapping ®; and ¥ are defined
as follows:

®;(T) = { A | there is a ground clause A <~ By A ... A By, AnotCy A
... AnotCy from P st. VB; (1 <i<m)B;€cUT and VC; (1 <j <n)
Cjedl,

U (F) ={ A| for every ground clause A < BiA...ABy AnotCi A...A
not Cy, from P, either 3B; (1 <i<m)s.t. B;edUF or 3C; (1 <j <n)
s.t. Cj co } O

Definition 2.4 Let I be an interpretation. Then,

Trto = W
Trtn+1l = &;(T7 T n);
T, = (JTrtm
n<w

Frl0 = HpU-Hgp Where—\HB:{—'A]AEHB};

Frin+1 = \I/[(F[\Ln);
Fr = () Frin O
n<w

As in [Pr89], T7 and F7 are the least fixpoints of the monotonic operators
®; and Y, respectively.

Definition 2.5 For every interpretation I, an operator © is defined by:

o) = ITU<TyFr>;

IT0 = <0;0>;
Itn+1 = O Tn);

Mp = |(JItn O

n<w

Proposition 2.1 Mp is the least fixpoint of the monotonic operator © and
also a model of P. O

By definition, Mp is uniquely defined for every paraconsistent logic pro-
gram. We call such an Mp the extended well-founded model of a program
and the meaning of a program represented by such a model is called the
extended well-founded semantics of a program.

Note that the original fixpoint definition of the well-founded semantics
in [Pr89] is three-valued and defined for general logic programs, while our
extended well-founded semantics is seven-valued and defined for extended
logic programs. Compared with the three-valued well-founded semantics,
the extended well-founded semantics handles positive and negative literals
symmetrically during the computation of the fixpoint. Further, the extended
well-founded model is the least fixpoint of a program under the ordering =,
while the three-valued well-founded model is the least fixpoint with respect
to the ordering f < L < t, which is basically different from <.?

Example 2.1 (barber’s paradox) Consider the following program:
shave(b, x) + not shave(x, x).

Then shave(b,b) is undefined under the three-valued well-founded seman-
tics, while Mp =< 0; {—shave(b,b)} > then shave(b,b) is true by default
under the extended well-founded semantics. In other words, the extended
well-founded semantics assumes the fact 'the barber shaves himself” without
conflicting the sentence in the program. 0O

2This point is also remarked in [Pr89, Pr90]. In terms of the bilattice valued logic
[Gi86, Fi91], the ordering < is called a truth ordering, while the ordering < is called a
knowledge ordering.

Also it should be noted that the extended well-founded model is the least
fixpoint of a program, but not necessarily the least model of the program in
general.

Example 2.2 P = { —p + notp, —q < —-p, q < }. Then Mp =<
{-p,q,—q};{p} > and the truth value of each predicate is {p =+ f, ¢ = T }.
On the other hand, the least model assigns truth values such as {p — L, ¢ —
t}. O

In fact, the above least model is not the fixpoint of the program. In
this sense, our extended well-founded semantics is different from the least
fixpoint model semantics of [BS87] (even for a program without nonmono-
tonic negation). The difference is due to the fact that in their least fixpoint
model semantics each fact which cannot be proved in a program is assumed
to be undefined, while it possibly has a default value under the extended
well-founded semantics. The above example also suggests the fact that for
a consistent program P, Mp is not always consistent.

The extended well-founded semantics is also different from Fitting’s bilattice-
valued semantics [Fi89, Fi91].

Example 2.3 Let P ={p <+ ¢, p<+ —¢q, q < }. Then, as pointed out
in [Su90], p is unexpectedly contradictory under Fitting’s semantics, while
Mp =< {p,q};{—p,—q} > then both p and ¢ are true under the extended
well-founded semantics. O

Now we examine the behavior of the extended well-founded semantics
more carefully in the presence of an inconsistent information.

Example 2.4 Let P ={ a < —b, —b< cAnoth, c<+ }. Then Mp =<
{¢,a,—b};{b, ~a,—c} >. Thus, the truth values of ¢ and a are true, while b
is false. O

In the above example, when we consider the program P’ = PU{ —a + },
the truth value of a turns contradictory, while truth values of ¢ and b are
unchanged. That is, a meaningful information is still available from the
inconsistent program.

On the other hand, when we consider the program P’ = P U { —¢ «,

d <+ }, the truth value of ¢ is now contradictory, while a and d are true and
b is false. Carefully observing this result, however, the truth of a is now less
credible than the truth of d, since a is derived from the fact —b which is now
supported by the inconsistent fact ¢ in the program.

Such a situation also happens in Blair and Subrahmanian’s fixpoint se-
mantics [BS87], in which a truth fact is not distinguished even if it is sup-
ported by an inconsistent fact in a program. In the next section, we refine
the extended well-founded semantics to distinguish such suspicious truth
facts from others.

2.3 Reasoning with Inconsistency

When a program contains an inconsistent information, it is important to
detect a fact affected by such an information and distinguish it from other
meaningful information in a program. In this section, we present such skep-
tical reasoning under the extended well-founded semantics.

First we introduce one additional notation. For a program P and each
literal L from Hp, L' is called a suffized literal where T is a collection of
sets of ground literals (possibly preceded by not). Informally speaking, each
element in I' presents a set of facts which are used to derive L in P (it is
defined more precisely below). An interpretation of such a suffixed literal
LT is supposed to be the same with the interpretation of L.

Definition 2.6 Let P be a program and I =< o; > be an interpretation
in which o (resp. 0) is a set of suffixed literals (resp. a set of ground literals).
For a set T (resp. F) of suffixed literals (resp. ground literals), the mapping
®7 and W7 are defined as follows:

OHT) ={ AT | there are k ground clauses A < By A...A By, Anot Cyy A
... AnotCp, (1 <1 <k)from Ps.t. VB (1 <i<m) B};“ € o UT and VCj;
(1<j<n)Cyedand !l =U{{Bn,-..,Bim,notCp,...,notCp,} Uy U
oo Ui |y € Ty 3

U3 (F) ={ A | for every ground clause A <~ BiA...ABy, AnotCiA...A
not Cy, from P, either 3B; (1 <i<m)s.t. B;€ dUF or 3C; (1 < j < n)
s.t. erj €o}. O

The least fixpoint M} of a program is similarly defined by using the
mapping ®7 and ¥ instead of ®; and ¥, respectively in the previous sec-
tion. Clearly, M3 is also a model of P and we call such M} the suspicious
well-founded model.

Example 2.5 Let P = {p< qgAnotr, p< —r, qg< s, —T <, S< }
Then7 ij =< {p{{qrsznOt T}v{ﬁr}}, q{{s}}’ —\’]“{@}’ 3{0}}7 {—|p’ -q,T, —|5} >, O

Definition 2.7 Let P be a program and M3 be its suspicious well-founded
model. For a suffixed literal L' in M %, if every set in I' contains a literal L'
or =L’ such that L is contradictory in M}, L is called suspicious. O

We consider a proven fact to be suspicious if every proof of the fact
includes an inconsistent information. In another words, if there is at least
one proof of a fact which contains no inconsistent information, we do not
consider such a fact to be suspicious. A proven fact which is not suspicious
is called sure.

Note that we do not consider any fact derived from true and false by
default information to be suspicious, since such a don’t-care information
just presents that both positive and negative facts are failed to prove in a
program and does not present any inconsistency by itself.

The following proposition presents that a fact which is derived using a
suspicious fact is also suspicious.

Proposition 2.2 Let P be a program and L' be a suffixed literal in Mp.
If each set in I' contains a suspicious fact, then the truth value of L is also
suspicious.

Proof: Suppose that each set v in I' contains a suspicious fact A. Then A
has its own derivation histories IV such that each 4’ in I contains a literal
which is contradictory in M. By definition, 4/ C + then ~ also contains the
contradictory literal. O

Now reasoning under the suspicious well-founded semantics is defined as
follows.

Definition 2.8 Let P be a program and M} be its suspicious well-founded
model. Then, for each atom A such that A (resp. —A!) is in M3, A is called
true with suspect (resp. false with suspect) if A (resp. —A) is suspicious and
—A (resp. A) is not sure in Mp.

On the contrary, if A (resp. —A) is suspicious but =A (resp. A) is sure
in M}, then A is false (resp. true) in M} without suspect. O

In particular, if A is both true and false with suspect, A is contradictory
with suspect.

Example 2.6 (cont. from Example 2.4) Let P = { a <— =b, —b + cA
notb, ¢+, —c<, d< }. Then, Mpis < {ct?, =0} gl0} qi{=benotb}}
—pi{enot b}}}; {b, ~a,—~d} >. Thus, d is true, c is contradictory, while a and
b are true with suspect and false with suspect, respectively. O

In the above example, if a new fact b is added to P, this fact now holds
for sure then b becomes true without suspect.

3 Extension to Disjunctive Programs

The semantics of logic programs is recently extended to disjunctive logic pro-
grams which contain incomplete information in a program. The well-founded
semantics is also extended to disjunctive logic programs by several authors
[Ro89, BLM90, Pr90]. In paraconsistent logic programming, [Su90] has also
extended the fixpoint semantics of [BS87] to paraconsistent disjunctive logic
programs. In this section, we present the extended well-founded semantics
for paraconsistent disjunctive logic programs.

A disjunctive program is a (possibly infinite) set of the clauses of the
form:
AIV.. VA +~BiAN...ANB,, AnotCy A ... Anot C,,

where [> 0, m,n > 0, each A;, B; and C}, are literals and all the variables are
assumed to be universally quantified at the front of the clause. The notion of
a ground clause (program) is also defined in the same way as in the previous
section. Hereafter, we use the term normal program to distinguish a program
which contains no disjunctive clause.

As in [Sa89], we consider the meaning of a disjunctive program by a set
of its split programs.

Definition 3.1 Let P be a disjunctive program and GG be a ground clause
from P of the form:

AIV..VA < BiA...ABy AnotCy A...AnotC, (I >2).

Then G is split into 2! — 1 sets of clauses G1,...,Gy_; such that for any
non-empty subset S; of {A41,..., A};

Gi={Aj < BiAN...ANBpAnotCi AN...ANnotC, | Aj € S; }.

A split program of P is a ground normal program which is obtained from P
by replacing each disjunctive clause G with its split clauses G;. O

Example 3.1 Let P ={ pV —q < notr, s < p, s+ —q }. Then there
are three split programs of P as follows:

P = {p+notr, s<p, s+ —q},
P, = {—-q<+notr, s<p, s+ —q},
Ps = {p<+notr, nqg« notr, s<p, s< —q}. O

Intuitively, each split program presents a possible world of the original
program in which each disjunction is interpreted in either exclusive or inclu-
sive way. The following proposition holds from the definition.

Proposition 3.1 Let P be a disjunctive program and P; be its split pro-
gram. If I is a model of P;, I is also a model of P. O

The extended well-founded models of a disjunctive program are defined
by those of its split programs.

Definition 3.2 Let P be a disjunctive program. Then Mp is called the
extended well-founded model of P if Mp is the extended well-founded model
of some split program of P. O

Clearly, the above definition reduces to the extended well-founded model
of a normal program in the absence of disjunctive clauses in a program.

A disjunctive program has multiple extended well-founded models in gen-
eral and each atom possibly has different truth value in each model. In clas-
sical two-valued logic programming, a ground atom is usually assumed to
be true (resp. false) if it is true (resp. false) in every minimal model of a
program. In our multi-valued setting, we define an interpretation of an atom
under the extended well-founded semantics as follows.

10

Definition 3.3 Let P be a disjunctive program, M},...,M}% be its ex-
tended well-founded models and Mb(A)(i = 1,...,n) be the truth value of
an atom A in M%. Then an atom A in P has a truth value p under the
extended well-founded semantics if Mp(A) = ... = Mp(A)=pu. O

Example 3.2 For the program P in Example 3.1, there are three extended
well-founded models such that M} =< {p, s}; {-p, ¢, ~q,r, =7, ~s} >, M3 =<
{_'Qa S}a {pa -p,q,7, T, _'S} > and]\4}?3 =< {p, —q, S}a {_'pa q,7, T, _'3} >.
Then s is true and r is don’t-care by default in P under the extended well-
founded semantics, while truth values of p and ¢ are not uniquely determined.
O

When a program has inconsistent models as well as consistent ones, how-
ever, it seems natural to prefer consistent models and consider truth values
in such models.

Example 3.3 Let P = { p <, —pVq < }. Then the extended well-founded
models of P are M} =< {p, —p};{q,~q} >, M3 =< {p,q}; {-p,~q} > and
M3} =< {p,—p,q};{~q} > where only M?% is consistent. O

In the above example, a rational reasoner seems to prefer the consistent
model MIQ_—, to M}_—, and M]?_i,, and interprets both p and ¢ to be true. The
extended well-founded semantics for such a reasoner is defined bellow.

Definition 3.4 Let P be a disjunctive program such that Mp, ..., M% (n #
0) are its consistent extended well-founded models. Then an atom A in P

has a truth value p under the rational extended well-founded semantics if
ME(A)=...= MR(A)=p. O

Proposition 3.2 Let P be a disjunctive program such that it has at least
one consistent extended well-founded model. If an atom A has a truth value
¢ under the extended well-founded semantics, then A has also the truth
value p under the rational extended well-founded semantics, but not vice
versa. O

The suspicious well-founded semantics presented in Section 2.3 is also
extensible to disjunctive programs in a similar way.

4 Related Work

Alternative approaches to paraconsistent logic programming based upon
the stable model semantics [GL88] are recently proposed in [PR91, GS92a.
These approaches have improved the result of [GL90] in the sense that stable
models are well-defined in inconsistent programs. However, these semantics
still inherit the problem of the stable model semantics and there exists a

11

program which has no stable model and yet it contains a meaningful infor-
mation. For example, a program { p <—, ¢ < notq } has no stable model,
while it has an (extended) well-founded model in which p is true. This ob-
servation presents that the stable model semantics is not always useful to
isolate pathological information in a program.

Pereira and Alferes [PA92] present an extended well-founded semantics
for normal logic programs which contain explicit negation as well as default
negation. Compared with ours, their semantics is restrictive in the sense
that they do not allow inconsistency in a program. Moreover, they assume
the coherency principle such that if not L is true, then =L is also true. This
principle, however, often causes an unintuitive behavior in a program. For
instance, consider again the barbar’s paradox shave(b, z) < not shave(x, x)
in which the truth value of shave(b,b) is undefined under their extended
well-founded semantics. When we get a new knowledge —shave(b,b), we
expect the truth value of shave(b,b) to be false in the updated program,
since it is initially undefined and is lately turned out to be false. But in the
presence of the coherency principle, this is not the case. The newly added
—shave(b, b) implies not shave(b,b), which derives shave(b,b) by the clause.
As a result, the program becomes inconsistent. This observation suggests
that the coherency principle is not always appropriate (although it is possible
to include this property to our formalism, if desired).

Wagner [Wa91] has also introduced a logic for possibly inconsistent logic
programs with two kinds of negation. His logic is paraconsistent and not
destructive in the presence of an inconsistent information, but it is still
restricted and different from our lattice valued logic.

Several studies have also been done from the standpoint of contradic-
tion removal in extended logic programs. Kowalski and Sadri [KS90] have
extended the answer set semantics of [GL90] in an inconsistent program by
giving higher priorities to negative conclusions in a program. This solu-
tion is rather ad-hoc and also easily simulated in our framework by giving
higher priorities to negative facts in a program. Another approaches such
as [PAA91] and [DRI1] consider removing contradiction brought about by
default assumptions. For instance, consider a program { p < notq, —p <+
r, r < }. This program has an inconsistent well-founded model, however, it
often seems legal to prefer the fact —p to p, since p is derived by the default
assumption not ¢, while its negative counterpart —p is derived by the proven
fact r. Then they present program transformations for taking back such a de-
fault assumption to generate a consistent well-founded model. In our frame-
work, such a distinction is also achieved as follows. Consider a suspicious
well-founded model of the program < {p{{rotat} —pt{ri}, r{@}}; {¢,—q, -1} >
where a fact p has a default fact in its derivation history while —p does not,
then we can prefer the fact —p as a more reliable one. These approaches
[PAA91, DRI1] further discuss contradiction removal in the context of belief
revision or abductive framework, but from the point of view of paraconsis-
tent logic programming, they provide no solution for an inconsistent pro-

12

gram such as { p <—, —p <, ¢ + }. Another approaches in this direction are
[In91, GS92b] in which the meaning of an inconsistent program is assumed
to be a collection of maximally consistent subsets of the program.

5 Concluding Remarks

In this paper, we have presented the extended well-founded semantics for
paraconsistent logic programs. Under the extended well-founded semantics,
a contradictory information is localized and a meaningful information is still
available in an inconsistent program. Moreover, a suspicious fact which is
affected by an inconsistent information can be distinguished from others by
the skeptical well-founded reasoning. The extended well-founded semantics
proposed in this paper is a natural extension of the three-valued well-founded
semantics and it is well-defined for every possibly inconsistent extended logic
program. Compared with other paraconsistent logics, it can treat both clas-
sical and default negation in a uniform way and also simply be extended to
disjunctive paraconsistent logic programs.

This paper has centered on a declarative semantics of paraconsistent logic
programs, but a proof procedure of the extended well-founded semantics is
achieved in a straightforward way as an extension of the SLS-procedure
[Pr89]. That is, each fact which is true/false in a program have a success-
ful SLS-derivation in a program, while a default fact in a program has a
failed derivation. A fact which is inconsistent in a program has a successful
derivation from its positive and negative goals. The proof procedure for the
suspicious well-founded semantics is also achieved by checking consistency of
each literal appearing in a successful derivation. These procedures are sound
and complete with respect to the extended well-founded semantics and also
computationally feasible.

Acknowledgments I would like to thank V. S. Subrahmanian and John
Grant for useful correspondence on the subject of this paper.

References

[Be75] Belnap, N. D., A Useful Four-Valued Logic, in Modern Uses of
Multiple-Valued Logic, J. M. Dunn and G. Epstein (eds.), Reidel Pub-
lishing, 8-37, 1975.

[BLM90] Baral, C., Lobo, J. and Minker, J., Generalized Disjunctive Well-
Founded Semantics for Logic Programs, CS-TR-2436, Univ. of Maryland,
1990.

[BS87] Blair, H. A. and Subrahmanian, V. S., Paraconsistent Logic Pro-
gramming, Proc. Conf. on Foundations of Software Technology and The-
oretical Computer Science (LNCS 287), 340-360, 1987.

13

[Co74] Costa, N. C. A. da, On the Theory of Inconsistent Formal Systems,
Notre Dame J. of Formal Logic 15, 497-510, 1974.

[DR9I1] Dung, P. M. and Ruamviboonsuk, P., Well-Founded Reasoning with
Classical Negation, Proc. 1st Int. Workshop on Logic Programming and
Nonmonotonic Reasoning, 120-132, 1991.

[Fi89] Fitting, M., Negation as Refutation, Proc. 4th Annual Symp. on Logic
i Computer Science, 63-69, 1989.

[Fi91] Fitting, M., Bilattices and the Semantics of Logic Programming, J.
of Logic Programming 11, 91-116, 1991.

[Gi86] Ginsberg, M. L., Multivalued Logics, Proc. of AAAI'86, 243-247,
1986.

[GL88] Gelfond, M. and Lifschitz, V., The Stable Model Semantics for Logic
Programming, Proc. 5th Int. Conf. on Logic Programming, 1070-1080,
1988.

[GLI0] Gelfond, M. and Lifschitz, V., Logic Programs with Classical Nega-
tion, Proc. 7th Int. Conf. on Logic Programming, 579-597, 1990.

[GS92a] Grant, J. and Subrahmanian, V. S.; Reasoning in Inconsistent
Knowledge Bases, draft manuscript, 1992.

[GS92b] Grant, J. and Subrahmanian, V. S., The Optimistic and Cautious
Semantics for Inconsistent Knowledge Bases, draft manuscript, 1992.

[In91] Inoue, K., Extended Logic Programs with Default Assumptions, Proc.
8th Int. Conf. on Logic Programming, 490-504, 1991.

[KL89] Kifer, M. and Lozinskii, E. L., RI: A Logic for Reasoning with Incon-
sistency, Proc. 4th Annual Symp. on Logic in Computer Science, 253-262,
1989.

[KS90] Kowalski, R. A. and Sadri, F., Logic Programs with Exception, Proc.
7th Int. Conf. on Logic Programming, 598-613, 1990.

[PAA91] Pereira, L. M., Alferes, J. J. and Aparicio, N., Contradiction Re-
moval within Well-Founded Semantics, Proc. 1st Int. Workshop on Logic
Programming and Nonmonotonic Reasoning, 105-119, 1991.

[PA92] Pereira, L. M., Alferes, J. J., Well-Founded Semantics for Logic Pro-
grams with Explicit Negation, Proc. ECAI’92, 102-106, 1992.

[Pr89] Przymusinski, T. C., Every Logic Program has a Natural Stratifica-
tion and an Iterated Least Fixed Point Model, Proc. 8th ACM Symp. on
Principle of Database Systems, 11-21, 1989.

[Pr90] Przymusinski, T. C., Extended Stable Semantics for Normal and Dis-
junctive Logic Programs, Proc. 7th Int. Conf. on Logic Programming, 459-
477, 1990.

[PRI1] Pimentel, S. G. and Rodi, W. L., Belief Revision and Paraconsis-
tency in a Logic Programming Framework, Proc. 1st Int. Workshop on
Logic Programming and Nonmonotonic Reasoning, 228-242, 1991.

14

[Ro89] Ross, K., The Well-Founded Semantics for Disjunctive Logic Pro-
grams, Proc. 1st Int. Conf. on Deductive and Object Oriented Databases,
352-369, 19809.

[Sa89] Sakama, C., Possible Model Semantics for Disjunctive Databases,
Proc. 1st Int. Conf. on Deductive and Object Oriented Databases, 337-
351, 1989.

[Su90] Subrahmanian, V. S., Paraconsistent Disjunctive Deductive
Databases, Proc. 20th Int. Symp. on Multiple-valued Logic, 339-345, 1990.

[Su90] Subrahmanian, V. S., Y-Logic: A Framework for Reasoning about
Chameleonic Programs with Inconsistent Completions, Fundamenta In-
formaticae XIII, 465-483, 1990.

[VRS88] Van Gelder, A., Ross, K. and Schlipf, J. S., Unfounded Sets and
Well-Founded Semantics for General Logic Programs, Proc. 7th ACM
Symp. on Principle of Database Systems, 221-230, 1988.

[Wa91] Wagner, G., A Database Needs Two kinds of Negation, Proc. 3rd
Symp. on Mathematical Fundamentals of Database and Knowledge Base
Systems (LNCS 495), 357-371, 1991.

15

