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Abstract. This paper introduces two orderings over abstract argumentation frame-
works to compare justification status under argumentation semantics. Given two
argumentation frameworks AF1 and AF2 and an argumentation semantics σ,
AF2 is more ♯-general than (or equal to) AF1 (written AF1 ⊑♯

σ AF2) if for any
σ-extension F of AF2 there is a σ-extension E of AF1 such that E ⊆ F . In
contrast, AF2 is more ♭-general than (or equal to) AF1 (written AF1 ⊑♭

σ AF2)
if for any σ-extension E of AF1 there is a σ-extension F of AF2 such that
E ⊆ F . We show that if AF1 ⊑♯

σ AF2 then AF2 skeptically accepts arguments
more than AF1 (under the σ-semantics) while if AF1 ⊑♭

σ AF2 then AF2 credu-
lously accepts arguments more than AF1. Mathematically, these orders constitute
pre-order sets over the set of all argumentation frameworks. Next we consider
comparing two AFs under dynamic environments by observing the effect of in-
corporating new information into given AFs. We introduce two orderings in such
dynamic environments and show its connection to strong equivalence between
argumentation frameworks.
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1 Introduction

There are several ways for comparing different theories. Given two first-order theories
T1 and T2, if T1 |= T2 holds then every formula derived from T2 is derived from T1. In
this case, T1 is considered more general (or informative) than T2. For instance, p |= p∨q
means that p is more informative than p ∨ q. In particular, T1 is equivalent to T2 (T1 ≡
T2) if T1 |= T2 and T2 |= T1. Inoue and Sakama [7, 8] argue that, in contrast to classical
monotonic logic, there is difficulty in defining information ordering in nonmonotonic
logics. A nonmonotonic theory generally has multiple extensions, and there are two
kinds of consequences of a theory, i.e., skeptical and credulous consequences. This is
contrasted to a first-order theory that has a unique extension as the logical consequences
of the theory. Then, depending on types of consequences, there exist several definitions
for determining that a theory is more informative than another theory. For instance,
consider two (nonmonotonic) logic programs: P1 = { p ← not q } and P2 = { p ←
not q, q ← not p }. Then P1 has the single answer set (or stable model) {p} and P2

has two answer sets {p} and {q}. If we compare skeptical consequences, we can say
that P1 is more informative than P2 because p is entailed from the former only. Instead,
if we compare credulous consequences, P2 is more informative than P1 because q is
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derived from the latter only. As such, the result depends on the type of inference, and in
this circumstance information ordering in classical logic cannot be applied. The study
[7] then introduces two orderings to logic programs. Given two logic programs P1 and
P2, P1 |=♯ P2 (P1 is more ♯-general than P2) iff for any answer set S of P1 there is
an answer set T of P2 such that T ⊆ S. Likewise, P1 |=♭ P2 (P1 is more ♭-general
than P2) iff for any answer set T of P2 there is an answer set S of P1 such that T ⊆ S.
These two orderings are respectively called the Smyth order and the Hoare order in
the domain theory [6]. The study [7] shows that if P1 |=♯ P2 (resp. P1 |=♭ P2) then
P1 entails more skeptical (resp. credulous) consequences than P2 under the answer set
semantics [5]. These orderings are also applied to default theories [8] and abductive
theories [9].

In this paper, we are interested in comparing justification status in (abstract) argu-
mentation frameworks (AFs) [3]. Given an argumentation framework AF , an argument
x is skeptically accepted (or justified) under the σ semantics if it is included in every σ-
extension of AF , while x is credulously accepted if it is included in some σ-extension
of AF . The notion of skeptical/credulous justification is of interest in the field of ar-
gumentation because “skepticism is related with making more or less committed eval-
uations about the justification state of arguments in a given situation: more skeptical
attitude corresponds to less committed (i.e. more cautious) evaluations” [1]. Baroni and
Giacomin [1] then provide systematic comparison of argumentation semantics with re-
spect to their skepticism. They compare skeptical/credulous consequences of different
argumentation semantics on a single argumentation framework. In contrast, the current
study aims at comparing skeptical/credulous consequences of different argumentation
frameworks under the same semantics. Suppose agents (or groups) who have their own
argumentation frameworks in which each AF represents an agent’s private view of ar-
guments and attack relations. Then it is meaningful to compare those AFs to see which
party is more skeptical/credulous in reasoning about arguments. We apply two order-
ings of [7, 8] to argumentation frameworks and show that those orderings are useful
for comparing skeptical/credulous acceptance among different argumentation theories.
We also compare AFs under dynamic environments and provide a connection to strong
equivalence of AFs. The rest of this paper is organized as follows. Section 2 reviews
notions used in this paper. Section 3 introduces two orderings between AFs. Section 4
introduces orderings in dynamic environments, and Section 5 addresses final remarks.

2 Preliminaries

2.1 Argumentation Framework

Let U be the universe of all arguments. An argumentation framework (AF) [3] is a pair
(A,R) where A ⊆ U is a finite set of arguments and R ⊆ A× A is the attack relation.
The collection of all AFs (induced by U) is denoted by AF . We write a→ b (a attacks
b) iff (a, b) ∈ R. A set S of arguments attacks an argument a (written S → a) iff there
is an argument b ∈ S that attacks a. A set S of arguments is conflict-free if there are no
arguments a, b ∈ S such that a attacks b. A set S of arguments defends an argument a if
S attacks every argument that attacks a. We write D(S) = { a | S defends a }. Given
AF = (A,R), a conflict-free set of arguments S ⊆ A is:
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– an admissible set iff S ⊆ D(S);
– a complete extension iff S = D(S);
– a stable extension iff S attacks each argument in A \ S;
– a preferred extension iff S is a maximal complete extension of AF (wrt ⊆);
– a grounded extension iff S is the minimal complete extension of AF (wrt ⊆).

Let EadmAF , EcomAF , EstbAF , EprfAF , and EgrdAF be the sets of admissible sets, complete ex-
tensions, stable extensions, preferred extensions, and the grounded extension of anAF ,
respectively. Then the following relations hold:

EstbAF ⊆ E
prf
AF ⊆ E

com
AF ⊆ EadmAF and EgrdAF ⊆ E

com
AF .

EstbAF is possibly empty, while others are not. In particular, EgrdAF is a singleton set. We
often write EσAF where σ means either adm, com, prf , stb or grd. We say that two
argumentation frameworks AF1 and AF2 are σ-equivalent (written AF1 ≡σ AF2) if
EσAF1

= EσAF2
. An argument a ∈ A is credulously (resp. skeptically) accepted under the

σ semantics of AF = (A,R) iff a ∈ E for some (resp. every) E ∈ EσAF . The set of
all credulously (resp. skeptically) accepted arguments under the σ semantics of AF is
denoted by crdσ(AF ) (resp. skpσ(AF )). When EstbAF = ∅, we define crdstb(AF ) = ∅
and skpstb(AF ) = U .

2.2 Ordering on Powersets

We recall some mathematical definitions about domains [6]. A pre-order (or quasi-
order) ≼ is a binary relation which is reflexive and transitive. A pre-order ≼ is a partial
order if it is also anti-symmetric. A pre-ordered set (resp. partially ordered set; poset)
is a set D with a pre-order (resp. partial order) ≼ on D. For a pre-ordered set ⟨D,≼ ⟩
and x, y ∈ D, we write x ≺ y if x ≼ y and y ̸≼ x. For a poset ⟨D,≼ ⟩, two elements
x, y ∈ D are comparable if x ≼ y or y ≼ x; otherwise, they are incomparable. A
chain in ⟨D,≼ ⟩ is a subset C of D in which each pair of elements is comparable. An
antichain in ⟨D,≼ ⟩ is a subset A of D in which each pair of different elements is
incomparable, i.e., there is no order relation between any two different elements in A.
For a pre-ordered set ⟨D,≼ ⟩ and any set X ⊆ D, we denote the maximal and minimal
elements of X as follows.

min≼(X) = {x ∈ X | ¬∃y∈X s.t. y ≺ x },
max≼(X) = {x ∈ X | ¬∃y∈X s.t. x ≺ y }.

We often denote these asmin(X) andmax(X) by omitting ≼. We also assume that the
relation ≼ is well-founded (resp. upwards well-founded) on D3 whenever min≼(X)
(resp. max≼(X)) is concerned in order to guarantee the existence of a minimal (resp.
maximal) element of any X ⊆ D. Note that, when D is finite, any pre-order is both
well-founded and upwards well-founded on D.

3 A relation R is well-founded on a class D iff every non-empty subset of D has a minimal
element with respect to R. A relation R is upwards well-founded on D iff the inverse relation
R−1 is well-founded on D.
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For any set D, let P(D) be the powerset of D. Given a poset ⟨D,≼ ⟩ and X,Y ∈
P(D), two orders are defined as follows:

X ⪯♯ Y iff ∀y∈Y ∃x∈X s.t. x ≼ y ,

X ⪯♭ Y iff ∀x∈X ∃y∈Y s.t. x ≼ y .

The relations ⪯♯ and ⪯♭ are respectively called the Smyth order and the Hoare order,
and both ⟨ P(D),⪯♯ ⟩ and ⟨ P(D),⪯♭ ⟩ are pre-ordered sets.

Example 1. Consider the poset ⟨ P({p, q}),⊆⟩. It holds that {{p}, {q}} ⪯♯ {{p}} ⪯♯

{{p, q}} and {{p}} ⪯♭ {{p}, {q}} ⪯♭ {{p, q}}. Since {∅, {p}} ⪯♯ {∅, {q}} ⪯♯

{∅, {p}} and {{p}, {p, q}} ⪯♭ {{q}, {p, q}} ⪯♭ {{p}, {p, q}} hold, both ⪯♯ and ⪯♭

are not partial orders.

For notational convenience, we often denote two orderings as⪯♯/♭ when distinction
between them is unimportant.

3 Ordering Argumentation Frameworks

3.1 Ordering AFs

In this section, we consider a pre-ordered set ⟨D,≼ ⟩ in which the domain D is P(U),
i.e., the class of sets of arguments in U , and the pre-order ≼ is the inclusion relation ⊆
over P(U). In this case ⟨ P(U),⊆⟩ becomes a poset. The Smyth and Hoare orderings
on P(P(U)) are then defined, which enables us to order classes of sets of arguments.

Definition 1 (orderings over sets of arguments). Let ⟨ P(U),⊆⟩ be a poset. For any
Σ1 and Σ2 in P(P(U)),

Σ1 ⪯♯ Σ2 iff ∀T ∈Σ2 ∃S∈Σ1 s.t. S ⊆ T ,
Σ1 ⪯♭ Σ2 iff ∀S∈Σ1 ∃T ∈Σ2 s.t. S ⊆ T .

Definition 2 (ordering AFs). Let AF1 and AF2 be two argumentation frameworks.

AF1 ⊑♯
σ AF2 iff EσAF1

⪯♯ EσAF2
,

AF1 ⊑♭
σ AF2 iff EσAF1

⪯♭ EσAF2

where σ ∈ { adm, com, prf , stb, grd }. We say that AF2 is more (or equally) ♯-general
(resp. ♭-general) than AF1 (under the σ-semantics) if AF1 ⊑♯

σ AF2 (resp. AF1 ⊑♭
σ

AF2).
We write AF1 ≡♯

σ AF2 (resp. AF1 ≡♭
σ AF2) iff AF1 ⊑♯

σ AF2 and AF2 ⊑♯
σ AF1

(resp. AF1 ⊑♭
σ AF2 and AF2 ⊑♭

σ AF1).

For notational convenience, we often denote two orderings as⊑♯/♭
σ when distinction

between them is unimportant.

Proposition 1. LetAF be the collection of all AFs. Then ⟨AF ,⊑♯/♭
σ ⟩ is a pre-ordered

set where σ ∈ { adm, com, prf , stb, grd }.
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Example 2. Consider AF1 = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}) and
AF2 = ({a, b, c, d}, {(a, d), (d, a), (b, d), (d, b)}).

AF1

-� - 	��
��

• • •
a b c

AF2

-� -�• • • •
a d b c

Then, EadmAF1
= EcomAF1

= {∅, {a}, {b}}, EprfAF1
= {{a}, {b}}, EstbAF1

= {{b}}, EgrdAF1
= {∅};

and EadmAF2
={∅, {a}, {b}, {c}, {a, b}, {c, d}, {a, b, c}}, EcomAF2

={{c}, {c, d}, {a, b, c}},
EprfAF2

= EstbAF2
= {{c, d}, {a, b, c}}, EgrdAF2

= {{c}}. In this case, it holds that AF1 ⊑♯
σ

AF2 for σ ∈ { adm, com, grd }; andAF1 ⊑♭
σ AF2 for σ ∈ { adm, com, prf , stb, grd }.

In what follows, some formal properties are addressed.

Proposition 2. Let AF1 and AF2 be two argumentation frameworks. It holds that (i)
AF1 ⊑♯

adm AF2, and (ii) AF1 ⊑♯
grd AF2 iff AF1 ⊑♭

grd AF2.

Proof. For any AF , ∅ ∈ EadmAF , and EgrdAF is a singleton set. Hence, the results hold. ⊓⊔

Two relations ⪯♯ and ⪯♭ are monotonic with respect to the increase of extensions.

Proposition 3. For any set Σ1 and Σ2 in P(P(U)), Σ1 ⊆ Σ2 implies Σ1 ⪯♭ Σ2 and
Σ2 ⪯♯ Σ1.

Proof. If Σ1 ⊆ Σ2, then ∀S ∈ Σ1, S ∈ Σ2 thereby Σ1 ⪯♭ Σ2 and Σ2 ⪯♯ Σ1. ⊓⊔

Proposition 4. Let AF1 and AF2 be two argumentation frameworks. If EσAF1
⊆ EσAF2

then AF1 ⊑♭
σ AF2 and AF2 ⊑♯

σ AF1 hold for σ ∈ { adm, com, prf , stb, grd }.

Proof. The result follows from Proposition 3. ⊓⊔

Proposition 5. Let AF1 and AF2 be two argumentation frameworks. Then the follow-
ing results hold for σ ∈ { adm, com, prf , stb, grd }.

(1) AF1 ≡♯
σ AF2 iff min⊆(EσAF1

) = min⊆(EσAF2
).

(2) AF1 ≡♭
σ AF2 iff max⊆(EσAF1

) = max⊆(EσAF2
).

Proof. In what follows, min⊆ is written as min. (1) If AF1 ⊑♯
σ AF2, then ∀S ∈

min(EσAF2
)∃T ∈ EσAF1

s.t. T ⊆ S, and then ∃U ∈ min(EσAF1
) s.t. U ⊆ T . Thus,

min(EσAF1
) ⪯♯ min(EσAF2

). Likewise,AF2 ⊑♯
σ AF1 impliesmin(EσAF2

) ⪯♯ min(EσAF1
).

Assume min(EσAF1
) ̸= min(EσAF2

). Then, (i) ∃U ∈ min(EσAF1
) \ min(EσAF2

) or (ii)
∃V ∈ min(EσAF2

) \ min(EσAF1
). In case of (i), ∃U ′ ∈ min(EσAF2

) s.t. U ′ ⊆ U by
min(EσAF2

) ⪯♯ min(EσAF1
). Also, ∃U ′′ ∈ min(EσAF1

) s.t. U ′′ ⊆ U ′ by min(EσAF1
) ⪯♯

min(EσAF2
). Thus, U ′′ ⊆ U . Since both U and U ′′ are in min(EσAF1

), U = U ′′ thereby
U ′ = U . This contradicts the assumption U ̸∈ min(EσAF2

). Similarly, (ii) also leads to
contradiction. Hence, min(EσAF1

) = min(EσAF2
). (2) is shown in a similar manner. ⊓⊔

Proposition 6. Let AF1 and AF2 be two argumentation frameworks. Then the follow-
ing three are equivalent for σ ∈ {prf , stb, grd}: (1) AF1 ≡♯

σ AF2, (2) AF1 ≡♭
σ AF2,

(3) AF1 ≡σ AF2 .
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Proof. Consider a poset ⟨ P(U),⊆⟩. Since EσAF is an antichain set for σ ∈ {prf , stb, grd},
max⊆(EσAF ) = min⊆(EσAF ) = EσAF . Hence, the result holds by Proposition 5. ⊓⊔

Example 3. ConsiderAF1 = ({p, q}, {(p, q), (q, p), (q, q)}) andAF2 = ({p, q}, {(p, q),
(q, p), (p, p)}) where EcomAF1

= {∅, {p}} and EcomAF2
= {∅, {q}}. Then, AF1 ≡♯

com AF2

but AF1 ̸≡com AF2.

Two orderings are related to credulous/skeptical acceptance of arguments.

Proposition 7. Let AF1 and AF2 be two argumentation frameworks. Then the follow-
ing relations hold for σ ∈ { adm, com, prf , stb, grd }.

1. If AF1 ⊑♭
σ AF2 then crdσ(AF1) ⊆ crdσ(AF2).

2. If AF1 ⊑♯
σ AF2 then skpσ(AF1) ⊆ skpσ(AF2).

Proof. (1) Assume AF1 ⊑♭
σ AF2. If EσAF1

= ∅ then crdσ(AF1) = ∅ by definition,
and the result holds immediately. Suppose that EσAF1

̸= ∅ and ψ ∈ crdσ(AF1). Then
ψ ∈ E for some E ∈ EσAF1

. By AF1 ⊑♭
σ AF2, for any E ∈ EσAF1

there is F ∈ EσAF2

such that E ⊆ F . Then ψ ∈ E implies ψ ∈ F , thereby ψ ∈ crdσ(AF2). Hence,
crdσ(AF1) ⊆ crdσ(AF2).

(2) AssumeAF1 ⊑♯
σ AF2. If EσAF2

= ∅ then skpσ(AF2) = U by definition, and the
result holds immediately. Suppose that EσAF2

̸= ∅. In this case, EσAF1
̸= ∅ by AF1 ⊑♯

σ

AF2. If ψ ∈ skpσ(AF1) then ψ ∈ E for every E ∈ EσAF1
. By AF1 ⊑♯

σ AF2, for any
F ∈ EσAF2

there is E ∈ EσAF1
such that E ⊆ F . Then ψ ∈ E implies ψ ∈ F , thereby

ψ ∈ skpσ(AF2). Hence, skpσ(AF1) ⊆ skpσ(AF2). ⊓⊔

Example 4. Consider AFs in Example 2. By AF1 ⊑♭
prf AF2, crdprf (AF1) = {a, b}

is a subset of crdprf (AF2) = {a, b, c, d}. By AF1 ⊑♯
com AF2, skpcom(AF1) = ∅ is a

subset of skpcom(AF2) = {c}.

By Proposition 7, when AF1 ⊑♭
σ AF2, AF2 has more (or equally) credulously

accepted arguments than AF1. In contrast, when AF1 ⊑♯
σ AF2, AF2 has more (or

equally) skeptically accepted arguments than AF1. As such, two orderings over AFs
characterize the amount of acceptable arguments in two different modes of reasoning.

3.2 Comparing Different Semantics

In this section, we compare different semantics of a single AF under two orderings. By
Proposition 3 and the relations EstbAF ⊆ E

prf
AF ⊆ EcomAF ⊆ EadmAF and EgrdAF ⊆ EcomAF , we

have: EstbAF ⪯♭ EprfAF ⪯♭ EcomAF ⪯♭ EadmAF , EgrdAF ⪯♭ EcomAF , EadmAF ⪯♯ EcomAF ⪯♯ EprfAF ⪯♯

EstbAF , and EcomAF ⪯♯ EgrdAF . Moreover, we have the next results.

Proposition 8. Let AF be an argumentation framework. Then, (1) EgrdAF ⪯♯ EλAF for
λ ∈ { com, prf , stb, grd }, and (2) EσAF ⪯♭ EcomAF for σ ∈ { adm, com, prf , stb, grd }.

Proof. (1) Since a grounded extension is the least element of EcomAF , ∀E ∈ EλAF , F ∈
EgrdAF and F ⊆ E, thereby EgrdAF ⪯♯ EλAF . (2) The results EσAF ⪯♭ EcomAF for σ ∈
{ com, prf , stb, grd } is already known. If E ∈ EadmAF then ∃F ∈ EcomAF such that E ⊆
F . Hence, EadmAF ⪯♭ EcomAF . ⊓⊔
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The above results are combined with the ordering of different AFs. For instance,
suppose thatAF1 ⊑♯

stb AF2 holds. By EσAF1
⪯♯ EstbAF1

for σ = {adm, com, prf , stb, grd},
for any stable extension F of AF1 there is a σ-extension E of AF1 such that E ⊆ F .
This means that if AF2 employs the stable semantics, then AF2 is more ♯-general than
AF1 that employs any semantics. Suppose, on the other hand, that AF1 ⊑♭

σ AF2 holds.
By EσAF2

⪯♭ EcomAF2
(Proposition 8(2)), for any σ-extensionE ofAF2 there is a complete

extension F of AF2 such that E ⊆ F . This means that if AF2 employs the complete
semantics, then AF2 is more ♭-general than AF1 that employs any semantics.

3.3 Minimal Upper and Maximal Lower Bounds

In this section, we consider a minimal upper bound and a maximal lower bound of the
sets of extensions with respect to two orderings ⪯♯ and ⪯♭.

Definition 3 (mub, mlb). Let ⟨ P(P(U)),⪯♯/♭ ⟩ be a pre-ordered set. For any Σ1 and
Σ2 in P(P(U)), a set Σ ∈ P(P(U)) is an upper bound of Σ1 and Σ2 if Σ1 ⪯♯/♭ Σ
and Σ2 ⪯♯/♭ Σ. An upper bound Σ is a minimal upper bound (mub) of Σ1 and Σ2 if
for any upper bound Σ′ of Σ1 and Σ2, Σ′ ⪯♯/♭ Σ implies Σ ⪯♯/♭ Σ′.

On the other hand, a setΣ ∈ P(P(U)) is a lower bound ofΣ1 andΣ2 ifΣ ⪯♯/♭ Σ1

and Σ ⪯♯/♭ Σ2. A lower bound Σ is a maximal lower bound (mlb) of Σ1 and Σ2 if for
any lower bound Σ′ of Σ1 and Σ2, Σ ⪯♯/♭ Σ′ implies Σ′ ⪯♯/♭ Σ.

Proposition 9. Let Σ1 and Σ2 be two antichain sets in ⟨ P(U),⊆⟩.

1. Σ ∈ P(P(U)) is an mub of Σ1 and Σ2 in ⟨ P(P(U)),⪯♯ ⟩ iff Σ = min⊆(X)
where X = {S ∪ T | S ∈ Σ1 and T ∈ Σ2 }.

2. Σ ∈ P(P(U)) is an mub of Σ1 and Σ2 in ⟨ P(P(U)),⪯♭ ⟩ iff Σ = max⊆(Σ1 ∪
Σ2).

3. Σ ∈ P(P(U)) is an mlb ofΣ1 andΣ2 in ⟨ P(P(U)),⪯♯ ⟩ iffΣ = min⊆(Σ1∪Σ2).
4. Σ ∈ P(P(U)) is an mlb of Σ1 and Σ2 in ⟨ P(P(U)),⪯♭ ⟩ iff Σ = max⊆(Y )

where Y = {S ∩ T | S ∈ Σ1 and T ∈ Σ2 }.

Proof. We show (1) and (3). The results of (2) and (4) are shown in similar ways.
(1) Σ is an upper bound of Σ1 and Σ2 in ⟨ P(P(U)),⪯♯ ⟩ iff Σ1 ⪯♯ Σ and Σ2 ⪯♯ Σ
iff ∀S ∈ Σ ∃T1 ∈ Σ1 s.t. T1 ⊆ S and ∀S ∈ Σ ∃T2 ∈ Σ2 s.t. T2 ⊆ S
iff ∀S ∈ Σ ∃T1 ∈ Σ1 ∃T2 ∈ Σ2 s.t. T1 ∪ T2 ⊆ S (∗).

Now suppose that Σ is given as min⊆({S ∪ T | S ∈ Σ1 and T ∈ Σ2}). Σ is an
antichain set. Then Σ is an upper bound of Σ1 and Σ2 because (∗) is satisfied. Assume
that Σ is not an mub. Then there is an antichain set4 Γ ∈ P(P(U)) s.t. (i) Γ is an upper
bound of Σ1 and Σ2, and (ii) Γ ⪯♯ Σ and (iii) Σ ̸⪯♯ Γ . Thus, Γ ̸= Σ. For any U ∈ Σ,
there are S1 ∈ Σ1 and T1 ∈ Σ2 s.t. U = S1 ∪ T1 by the definition of Σ. For this U ,
there is a set V ∈ Γ such that V ⊆ U by (ii) and that S2 ∪ T2 ⊆ V for some S2 ∈ Σ1

and T2 ∈ Σ2 by (i) and (∗). So S2∪T2 ⊆ S1∪T1. SinceΣ is the collection of minimal

4 Without loss of generality, Γ is assumed to be an antichain set. If Γ is not an antichain set,
there is S, T ∈ Γ s.t. S ⊆ T . Put Γ ′ = Γ \ {T}. Then Γ ′ is an upper bound of Σ1 and Σ2

(because if Γ satisfies (∗) then Γ ′ satisfies (∗)) and also satisfies (ii) and (iii).
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sets, S2∪T2 = S1∪T1. Thus, U = V . Hence,Σ ⊆ Γ . ByΣ ̸= Γ , there isW ∈ Γ \Σ.
Again S3 ∪ T3 ⊆ W for some S3 ∈ Σ1 and T3 ∈ Σ2 by (i) and (∗). However, there
must be some X ∈ Σ such that X ⊆ W by the construction of Σ and the minimality
of Σ. Because W ̸∈ Σ, X ⊂ W holds. However, by Γ ⪯♯ Σ there is Y ∈ Γ such that
Y ⊆ X and hence Y ⊂W . This contradicts the fact that Γ is an antichain set.

(3) Σ is a lower bound of Σ1 and Σ2 in ⟨ P(P(U)),⪯♯ ⟩ iff Σ ⪯♯ Σ1 and Σ ⪯♯ Σ2

iff ∀S1 ∈ Σ1 ∃T ∈ Σ s.t. T ⊆ S1 and ∀S2 ∈ Σ2 ∃T ∈ Σ s.t. T ⊆ S2

iff ∀S ∈ Σ1 ∪Σ2 ∃T ∈ Σ s.t. T ⊆ S (†).
Now suppose that Σ = min⊆(Σ1 ∪ Σ2). Then Σ is a lower bound of Σ1 and Σ2

because (†) is satisfied. Assume that Σ is not an mlb. Then there is an antichain set
Γ ∈ P(P(U)) s.t. (i) Γ is a lower bound of Σ1 and Σ2, and (ii) Σ ⪯♯ Γ and (iii)
Γ ̸⪯♯ Σ. Thus, Σ ̸= Γ . By (ii), for any V ∈ Γ , there is U ∈ Σ such that U ⊆ V . By
this and the fact that Γ is a lower bound of Σ1 and Σ2, we have that ∀W ∈ Σ1 ∪ Σ2,
∃V ∈ Γ ∃U ∈ Σ such that U ⊆ V ⊆ W . As U ∈ Σ1 ∪Σ2, it must be U = V by the
minimality ofΣ, and thus Γ ⊆ Σ. ByΣ ̸= Γ , there isX ∈ Σ \Γ . SinceX ∈ Σ1∪Σ2

by the construction of Σ, there must be some Y ∈ Γ such that Y ⊆ X by (†). As
X ̸∈ Γ , Y ⊂ X holds. However, by (ii) there is Z ∈ Σ such that Z ⊆ Y and thus
Z ⊂ X . This contradicts the fact that Σ is an antichain set. Therefore, Σ is a mlb of
Σ1 and Σ2 in ⟨ P(P(U)),⪯♯ ⟩. ⊓⊔

Proposition 9 states that an mub or mlb of two antichain sets in ⟨ P(P(U)),⪯♯/♭ ⟩
is constructed by the operations min or max. Suppose two argumentation frameworks
AF1 and AF2 having the sets of σ-extensions EσAF1

and EσAF2
, respectively. Then, a

question is whether there is AF ∈AF such that EσAF is obtained as an mub (or mlb) of
EσAF1

and EσAF2
. If σ = grd, there is an AF that has the extension obtained as the mub

of Proposition 9(1) or (2). This is because if EgrdAF1
= {E} and EgrdAF2

= {F} then we
can construct an AF s.t. EgrdAF = {E ∪ F} or EgrdAF = {E ∩ F} as AF = (E ∪ F, ∅) or
AF = (E ∩ F, ∅). On the other hand, an AF having the grounded extension as the mlb
of Proposition 9(3) or (4) does not always exist. This is because min⊆(EgrdAF1

∪ EgrdAF2
)

or max⊆(EgrdAF1
∪ EgrdAF2

) is not a singleton set in general. When an AF has multiple
extensions, the answer is also negative in general.

Example 5. Consider AF1 and AF2 such that EstbAF1
= {{a, b}, {a, c}} and EstbAF2

=

{{b, c}}. Then,min⊆(EstbAF1
∪EstbAF2

) = max⊆(EstbAF1
∪EstbAF2

) = {{a, b}, {a, c}, {b, c}},
but there is no AF such that EstbAF = {{a, b}, {a, c}, {b, c}}.

Any stable extension must be incomparable and tight, and the set {{a, b}, {a, c}, {b, c}}
does not satisfy this condition [2, 4]. As such, the existence of an mub or mlb as a set
of extensions as in Proposition 9 does not imply that it is realizable under a particular
semantics [2, 4], that is, it is not necessarily the case that there is an AF having the set
of σ-extensions that coincide with an mub or mlb of two sets of extensions of two AFs.
Investigating necessary and/or sufficient conditions for the existence of an mub/mlb of
two AFs under σ-semantics is left for future study.
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4 Strong Ordering

This section considers comparing two AFs under dynamic environments by observing
the effect of incorporating new information into given argumentation frameworks. In
this section we consider AF = (A,R) where A ⊆ U and R ⊆ U × U .5 Given AF1 =
(A1, R1) and AF2 = (A2, R2), define AF1 ⊔AF2 = (A1 ∪A2, R1 ∪R2).

Definition 4. Let AF1 and AF2 be two argumentation frameworks. Then,

AF1 �
♯
σ AF2 iff (AF1 ⊔AF ) ⊑♯

σ (AF2 ⊔AF ) for any AF ∈ AF ,
AF1 �

♭
σ AF2 iff (AF1 ⊔AF ) ⊑♭

σ (AF2 ⊔AF ) for any AF ∈ AF

where σ ∈ { adm, com, prf , stb, grd }.

We write �
♯/♭
σ to represent both �♯

σ and �♭
σ together. The relation AF1 �

♯/♭
σ AF2

implies AF1 ⊑♯/♭
σ AF2 by putting AF = (∅, ∅).

Proposition 10. LetAF1 andAF2 be two argumentation frameworks. IfAF1�
♯/♭
σ AF2

then AF1 ⊑♯/♭
σ AF2 where σ ∈ { adm, com, prf , stb, grd }.

By Proposition 2, the next result holds.

Proposition 11. LetAF1 andAF2 be two argumentation frameworks. Then, (i)AF1�
♯
adm

AF2, and (ii) AF1 �
♯
grd AF2 iff AF1 �

♭
grd AF2.

Two argumentation frameworks AF1 and AF2 are strongly equivalent (wrt σ se-
mantics) if AF1 ⊔ AF ≡σ AF2 ⊔ AF for any AF ∈ AF [10]. The notion of strong
equivalence is related to the orderings �♯/♭

σ as follows.

Proposition 12. Let AF1 and AF2 be two argumentation frameworks. Then the fol-
lowing three are equivalent for σ ∈ { prf , stb, grd }: (1) AF1 �♯

σ AF2 �♯
σ AF1, (2)

AF1 �
♭
σ AF2 �

♭
σ AF1, (3) AF1 and AF2 are strongly equivalent.

Proof. AF1 �
♯/♭
σ AF2 �

♯/♭
σ AF1

iff (AF1 ⊔AF ) ⊑♯/♭
σ (AF2 ⊔AF ) ⊑♯/♭

σ (AF1 ⊔AF ) for any AF ∈ AF
iff (AF1 ⊔AF ) ≡σ (AF2 ⊔AF ) for any AF ∈ AF (Proposition 6)
iff AF1 and AF2 are strongly equivalent. ⊓⊔

Example 6. ([10]) Two argumentation frameworksAF1 = ({a, b, c}, {(a, b), (b, c), (c, a)})
and AF2 = ({a, b, c}, {(a, c), (c, b), (b, a)}) have the same preferred extension ∅, but
they are not strongly equivalent. This is explained by the fact that forAF = ({a, b}, {(a, b)}),
AF1 ⊔AF has the preferred extension ∅, while AF2 ⊔AF has the preferred extension
{a}, thereby (AF2 ⊔AF ) ̸⊑♯

prf (AF1 ⊔AF ).

Proposition 13. Let AF1 and AF2 be two argumentation frameworks. Then the fol-
lowing results hold for σ ∈ { prf , stb, grd }.

5 We relax the condition by technical reasons but it does not affect the results of previous sec-
tions. This is because attack relations in (U×U)\(A×A) do not change extensions of AF .
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1. If AF1 �
♭
σ AF2 then EσAF1

⊆ EσAF2
.

2. If AF1 �
♯
σ AF2 then EσAF2

⊆ EσAF1
.

Proof. (1) Let AF1 = (A1, R1) and AF2 = (A2, R2). If AF1 �
♭
σ AF2, then AF1 ⊑♭

σ

AF2 (Proposition 10). Assume EσAF1
̸⊆ EσAF2

. Then there is an extension E ∈ EσAF1
\

EσAF2
. By AF1 ⊑♭

σ AF2, there is F ∈ EσAF2
such that E ⊂ F . For any F satisfying

E ⊂ F , there is an argument a ∈ F \ E. Since F is conflict-free, E ̸→ a. Suppose
that a ∈ A1. The fact a ̸∈ E implies a ̸∈ D(E). Then there is (b, a) ∈ R1 s.t. b ∈ A1

and E ̸→ b. Since (E ̸→ a), b ̸∈ E thereby b ̸∈ D(E). Then there is (c, b) ∈ R1 s.t.
c ∈ A1, c ̸= a and E ̸→ c. (If c = a then E′ = E ∪ {a} defends every element in
E′. So E′ ∈ EσAF1

which contradicts the antichain property of EσAF1
.) Since (E ̸→ b),

c ̸∈ E thereby c ̸∈ D(E). Repeating the above argument, A1 becomes an infinite set.
This contradicts the assumption thatA1 is finite. Hence, there is an argument a ∈ F \E
s.t. a ̸∈ A1. Consider AF = ({d}, {(a, d)}) where d ̸∈ A1 ∪ A2. Then AF1 ⊔ AF
has an extension E′ = E ∪ {d}, while F is an extension of AF2 ⊔ AF . So E′ ̸⊆ F .
Moreover, for any G ∈ EσAF2

such that E ̸⊂ G, E′ = E ∪ {d} ̸⊆ G. Thus, for any
extension G′ of AF2 ⊔ AF , E′ ̸⊆ G′. Hence, (AF1 ⊔ AF ) ̸⊑♭

σ (AF2 ⊔ AF ), thereby
AF1�̸

♭
σAF2. Contradiction. (2) is shown in a similar manner. ⊓⊔

Proposition 13 shows that �♯/♭
σ provides a sufficient condition for inclusion between

the sets of extensions, while ⊑♯/♭
σ provides a necessary condition for it (Proposition 4).

Proposition 14. LetAF1 andAF2 be two argumentation frameworks. Then the follow-
ing three are equivalent for σ ∈ { prf , stb, grd }: (1) AF1 �

♭
σ AF2, (2) AF2 �

♯
σ AF1,

(3) EσAF1⊔AF ⊆ EσAF2⊔AF for any AF ∈ AF .

Proof. We show (1)⇔(3). The relation (2)⇔(3) is shown in a similar way. Suppose
AF1 �

♭
σ AF2. By definition, (AF1 ⊔ AF ) ⊑♭

σ (AF2 ⊔ AF ) for any AF ∈ AF . Then
(AF1 ⊔ AF ) ⊔ AF ′ ⊑♭

σ (AF2 ⊔ AF ) ⊔ AF ′ for any AF and AF ′ in AF . So AF1 ⊔
AF �♭

σ AF2 ⊔ AF for any AF ∈ AF . By Proposition 13(1), EσAF1⊔AF ⊆ EσAF2⊔AF .
Conversely, suppose EσAF1⊔AF ⊆ EσAF2⊔AF for any AF ∈ AF . By Proposition 4,
AF1 ⊔AF ⊑♭

σ AF2 ⊔AF for any AF ∈ AF . Hence, AF1 �
♭
σ AF2. ⊓⊔

As such, two relations �♭
σ and �♯

σ are symmetric for σ ∈ { prf , stb, grd }.

5 Concluding Remarks

We introduced several orderings for comparing sets of extensions in argumentation
frameworks. We showed that two orderings ⊑♯

σ and ⊑♭
σ are used for comparing skep-

tical/credulous acceptance of arguments in different argumentation frameworks. More-
over, those relations have connections to inclusion/equivalence relations between sets
of extensions. Since argumentation theories are nonmonotonic, some formal properties
addressed in this paper have their counterpart in [7–9]. On the other hand, we show that
those orderings are used for comparing different semantics of argumentation, which is
not considered in the context of default theories or logic programming. The existence
of an AF that has a set of extensions as an mub or mlb of given two sets of extensions
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is not always guaranteed, which is in contrast with the cases of default theories and
logic programming where the existence of an mub or mlb is guaranteed. We consid-
ered five semantics of AFs in this paper, but the most results obtained in this paper are
independent of particular semantics and applied to other semantics as well.
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4. Dunne, P. E., Dvořák, W., Linsbichlerc, T., Woltran, S.: Characteristics of multiple view-
points in abstract argumentation. Artificial Intelligence 228, 153–178 (2015)

5. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

6. Gunter, C. A., Scott, D. S.: Semantic domains. In: van Leeuwen, J. (Ed.), Handbook of
Theoretical Computer Science, Vol. B, North-Holland, pp. 633–674 (1990)

7. Inoue, K., Sakama, C.: Generality relations in answer set programming. In: Etalle, S. and
Truszczynski, M. (eds.): ICLP 2006, LNCS 4079, pp. 211–225, Springer, Heidelberg (2006)

8. Inoue, K., Sakama, C.: Generality and equivalence relations in default logic. In: Proceedings
AAAI-07, pp. 434–439 (2007)

9. Inoue, K., Sakama, C.: Exploring relations between answer set programs. In: Logic Pro-
gramming, Knowledge Representation, and Nonmonotonic Reasoning – Essays Dedicated
to Michael Gelfond on the Occasion of His 65th Birthday, LNAI 6565, pp. 91–110, Springer,
Heidelberg (2011)

10. Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation frameworks.
Artificial Intelligence 175, 1985–2009 (2011)


