
Discovery of Cellular Automata Rules

Using Cases

Ken-ichi Maeda? and Chiaki Sakama †

Department of Computer and Communication Sciences
Wakayama University

† sakama@sys.wakayama-u.ac.jp

Abstract. Cellular automata (CAs) are used for modeling the problem
of adaptation in natural and artificial systems, but it is hard to design
CAs having desired behavior. To support the task of designing CAs, this
paper proposes a method for automatic discovery of cellular automata
rules (CA-rules). Given a sequence of CA configurations, we first collect
cellular changes of states as cases. The collected cases are then classified
using a decision tree, which is used for constructing CA-rules. Condi-
tions for classifying cases in a decision tree are computed using genetic
programming. We perform experiments using several types of CAs and
verify that the proposed method successfully finds correct CA-rules.

1 Introduction

Cellular automata (CAs) [4] are discrete dynamical systems whose behavior is
specified by the interaction of local cells. Because of their simple mathemat-
ical constructs and distinguished features, CAs have been used for modeling
advanced computation such as massively parallel computers and evolutionary
computation, and also used for simulating various complex systems in the real
world. On the other hand, complex behavior of CAs is difficult to understand,
which makes hard to design CAs having desired behavior. The task of designing
CAs usually requires domain knowledge of a target problem and it is done by
human experts manually and experientially. This task becomes harder as a tar-
get problem becomes complex, since there are a number of possible automata to
specify behavior. The difficulty also comes from the feature of CAs such that a
small change of local interaction would affect the global behavior of a CA, and
the result of emergence depends on the initial configuration of cells.

To automate CA designing, we develop techniques for automatic discovery
of CA-rules which reflect cellular changes in observed CA configurations. Recon-
struction of CA-rules from input configurations is known as the identification
problem [1]. However, we aim at not only reconstructing the original CA-rules
but also discovering new CA-rules. Automatic discovery of CA-rules is also stud-
ied in the context of density classification task [3]. The objective of this task is to
find a 1-dimensional 2-state CA that can classify the density of 1’s in the initial

? Current address: Hitachi System& Services, Ltd. ke-maeda@hitachi-system.co.jp



configuration, which is different from our goal. Technically, our goal is achieved
by the following steps. Given a sequence of CA configurations we first collect
cellular changes of states as cases. The collected cases are then classified using a
decision tree which is used for constructing CA-rules. Conditions for classifying
cases in a decision tree are computed using genetic programming. We perform
experiments using several types of CAs and verify that the proposed method not
only reconstructs the original CA-rules, but also discovers new CA-rules.

The rest of this paper is organized as follows. Section 2 presents a brief in-
troduction of cellular automata. Section 3 provides techniques for automatic
discovery of CA-rules. Section 4 shows experimental results to verify the pro-
posed method, and Section 5 summarizes the paper.

2 Cellular Automata

A cellular automaton (CA) consists of a regular grid of cells, each of which has
a finite number of possible states. The state of each cell changes synchronously
in discrete time steps according to local and identical transition rules (called
CA-rules). The state of a cell in the next time step is determined by its current
state and the states of its surrounding cells (called a neighborhood of a cell).
The collection of all cellular states in the grid at some time step is called a
configuration. A CA has an n-dimensional cellular space.

Consider a sequence of configurations S0, . . . , Sn in which each configuration
has a finite number of cells. Here, S0 is the initial configuration of a CA and
St (0 ≤ t ≤ n) represents the configuration of the CA at a time step t. A
configuration St consists of states of a cell Ctx,y, where x and y represent the
coordinates of the cell in the configuration (Figure 1).

Fig. 1. Configurations of a CA

Given a sequence of configurations as an input, we want to output CA-rules
which, applied to the initial configuration, reproduce the change of patterns of
input configurations. We pursue the goal in the following steps.

1. Determine an appropriate neighborhood of a cell.
2. Collect cellular changes of states as cases from input configurations.
3. Construct a decision tree to classify cases and extract CA-rules.

In the next section, we explain techniques using 2-dimensional 2-state CAs,
but the techniques are applied to m-dimensional n-state CAs in general.



3 Discovering CA-Rules

3.1 Collecting Cases

We first describe a method of collecting cases. A case is defined as a pair
(Rtx,y , C

t+1
x,y ) where Rtx,y is a neighborhood of a cell Ctx,y at some time step t

and Ct+1
x,y is the state of the cell at the next time step t+ 1.1 Cases are collected

using the following procedure.

Procedure: Collecting cases.
Input : a sequence of configurations S0, . . . , Sn.
Output : a set CASE of cases.

Initially put CASE = ∅, and do the following.

1. From the configuration St, choose a cell Ctx,y and extract its neighborhood
Rtx,y, where Rtx,y contains Ctx,y as a central cell.

2. From the configuration St+1, extract the cell Ct+1
x,y .

3. If the pair (Rtx,y , C
t+1
x,y ) is not in CASE, add it to CASE.

4. Iterate the above 1–3 steps for all the coordinates (x, y) of each configuration
S0, . . . , Sn−1.

Figure 2 illustrates an example of a 2-dimensional 2-state CA in which cases
are collected using a neighborhood of the 3× 3 square.

Fig. 2. Collecting Cases

In the above, a neighborhood is selected such that (i) it uniquely deter-
mines the next state of a target cell, and (ii) it does not contain cells which
are irrelevant to the cellular changes of states. The condition (i) is examined by
checking whether there exist two different cases (Rtx,y, C

t+1
x,y ) and (Rtz,w, C

t+1
z,w )

in CASE such that Rtx,y = Rtz,w and Ct+1
x,y 6= Ct+1

z,w . If there is one, the neigh-
borhood is changed by increasing its size. To remove redundant cells in (ii), we
use hill-climbing search with a heuristic function which gives a higher score to a
neighborhood that can distinguish every case with fewer cells.

1 The scripts t and (x, y) are often omitted when they are not important in the context.



3.2 Decision Trees

To construct CA-rules, we classify cases using a decision tree. A decision tree
used here has properties such that (i) each layer except the lowest one has a
classification condition Coni(R) where R is a neighborhood; and (ii) each node
Ni,j except the root node has a condition value Vi,j and the next state NCi,j of
a cell (Figure 3).

Fig. 3. A decision tree

Classification conditions classify cases according to the state of a neighbor-
hood. For example, given a neighborhood R of the 3 × 3 square, the classifica-
tion condition Con(R) = Σci∈R ci represents the sum of the states of cells in
R. Classification conditions are computed using genetic programming (GP). In
GP classification conditions are expressed by a tree structure (called a condition
tree) in which Con0(R), Con1(R), Con2(R), . . . are cascaded (cf. Figure 4(b)).
GP applies genetic operations to a condition tree to find classification condi-
tions which correctly classify all cases. A condition value Vi,j is calculated by
Coni−1(R) and NCi,j represents the state of a cell at the next time step.

Given a neighborhood Rtx,y of a cell in a configuration St, a decision tree
returns the next state of the cell in the configuration St+1 as an output. A
decision tree is built using cases as follows.

Procedure: Building a decision tree.
Input : a set CASE of cases where (Rk, Ck) (k ≥ 1) is an element from CASE,

and classification conditions Con0(R), . . . , Conl−1(R) (l > 0).
Output : a decision tree with the depth l.

Set the initial tree as the root node N0,0. For every case (Rk, Ck) from CASE,
do the following.

1. At the root node N0,0, if it has a child node N1,j (j ≥ 0) with V1,j =
Con0(Rk), apply the steps 2–3 to N1,j . Otherwise, add the new node N1,j

with V1,j = Con0(Rk) and NC1,j = Ck to the tree.
2. For each node Ni,j (1 ≤ i < l), if there is a node Ni+1,h with Vi+1,h =
Coni(Rk), apply the steps 2–3 to Ni+1,h. Else if there is no node Ni+1,h

with Vi+1,h = Coni(Rk) and it holds that NCi,j 6= Ck, add a new node
Ni+1,h with Vi+1,h = Coni(Rk) and NCi+1,h = Ck. Otherwise, the case
(Rk, Ck) is successfully classified.

3. If there is a node Nl,j with NCl,j = Ck, the case (Rk, Ck) is successfully
classified. Otherwise, the construction of a decision tree fails.



The procedure searches a node Ni+1,j which has the value Vi+1,j equal to
Coni(Rk). When the node Ni+1,j has the next state NCi+1,j which is not equal
to Ck, the tree is expanded by adding a new node.2 The depth l of a decision
tree is determined by the number of classification conditions. A decision tree is
expanded by introducing additional classification conditions until every case is
classified. At the bottom level of a tree, no such expansion is performed. So, if
there is a node Nl,j such that the next state NCl,j does not coincide with Ck,
the construction of a decision tree fails. This means that classification conditions
used for the construction of a decision tree are inappropriate, then it is requested
to re-compute new classification conditions. Those classification conditions which
fail to classify all cases are given penalties in the process of the evaluation of
GP, and they are not inherited to the next generation. This enables us to find
more appropriate classification conditions.

Once a decision tree is successfully built, it can classify all cases from CASE.
When a neighborhood Rtx,y is given as an input to a decision tree, the tree
outputs the next state NCi,j of a node Ni,j satisfying the following conditions:
(1) every antecedent node Nk,l (0 < k < i) of Ni,j satisfies the condition Vk,l =
Conk−1(Rtx,y) and Ni,j satisfies the condition Vi,j = Coni−1(Rtx,y), and (2)
Ni,j has no child node Ni+1,h satisfying Vi+1,h = Coni(R

t
x,y). For example, in

the decision tree of Figure 3, given the input Rtx,y , the tree outputs the next
state NC2,2 of N2,2 if the next conditions are met: (1) Con0(Rtx,y) = V1,1 and
Con1(Rtx,y) = V2,2, and (2) Con2(Rtx,y) 6= V3,1 and Con2(Rtx,y) 6= V3,2. The first
condition ensures that the condition values of the nodes N1,1 and N2,2 satisfy the
classification conditions Con0(Rtx,y) and Con1(Rtx,y), respectively. The second
condition ensures that the condition values of the nodes N3,1 and N3,2 do not
satisfy Con2(Rtx,y). Using these conditions a decision tree effectively searches
a node which has the condition value satisfying classification conditions with
respect to the input Rtx,y, and outputs the next state of a cell. The node N2,2

represents the following if-then rule:

if Con0(Rtx,y) = V1,1 and Con1(Rtx,y) = V2,2 and Con2(Rtx,y) 6= V3,1

and Con2(Rtx,y) 6= V3,2 then NC2,2.

Every node except the root node represents such an if-then rule. Given an
input Rtx,y a decision tree is built so as to satisfy the condition of only one such
rule, so that the output NCi,j is uniquely determined by the input.

4 Experiments

To verify the effect of the proposed techniques, we present the results of two
experiments such that: (a) given 2-dimensional 2-state CA configurations pro-
duced by a 2-dimensional 2-state CA, find 2-dimensional 2-state CA-rules which
reproduce the same configurations; and (b) given 2-dimensional 2-state CA con-
figurations produced by a 1-dimensional 2-state CA, find 2-dimensional 2-state
CA-rules which reproduce the same configurations.

2 A similar way of expanding a decision tree is in [2].



The purpose of these experiments is as follows. In the experiment (a), we
verify that our procedure can find the original CA-rules which produce observed
2-dimensional 2-state configurations. In the experiment (b), on the other hand,
we show that our procedure can discover new CA-rules which produce observed
configurations but have different dimensions from the original one.

4.1 Finding the Original 2-dimensional 2-state CA-rules

In this experiment, we use the following 2-dimensional 2-state CA.

– A neighborhood consists of 9 square cells: a central cell and 8 orthogonally
and diagonally adjacent cells. The state of a cell is either 0 or 1.

– A configuration consists of 100 × 100 cells. The initial configuration S0 is
randomly created.

– A sequence of configurations S0, . . . , S20 are produced by the CA-rules such
that: (1) if the central cell has exactly 2 surrounding cells of the state 1, the
next state of the cell does not change; (2) else if the central cell has exactly 3
surrounding cells of the state 1, the next state of the cell is 1; (3) otherwise,
the next state of the central cell is to 0.3

From the input configurations S0, . . . , S20, the neighborhood, the condition
tree, and the decision tree were constructed as shown in Figure 4.

Fig. 4. Experimental result

The condition tree represents the classification conditions such that Con0(R) =
c4 and Con1(R) = c0 +c1 +c2 +c3 +c5 +c6+c7 +c8, where each ci corresponds to
a cell in the neighborhood (a), and takes the value of either 0 or 1. The decision
tree (c) was built from this classification condition. In each node, a value in the
left-hand side expresses the condition value Vi,j and a value in the right-hand
side expresses the next state NCi,j .

Nodes of this decision tree represent the following if-then rules:

N1,0 : if Con0(R) = 0 and Con1(R) 6= 3 then NC1,0 = 0,

N2,0 : if Con0(R) = 0 and Con1(R) = 3 then NC2,0 = 1,

N1,1 : if Con0(R) = 1 and Con1(R) 6= 3 and Con1(R) 6= 2 then NC1,1 = 0,

N2,1 : if Con0(R) = 1 and Con1(R) = 3 then NC2,1 = 1,

N2,2 : if Con0(R) = 1 and Con1(R) = 2 then NC2,2 = 1.

3 This is known as the Game of Life.



Comparing these 5 rules with the original CA-rules, N2,0 and N2,1 correspond
to the rule (2); N2,2 corresponds to the rule (1) in which the state of the central
cell is 1; N1,0 and N1,1 correspond to the rule (3) and the rule (1) in which the
state of the central cell is 0. Thus, it is verified that the CA-rules constructed
by the decision tree coincide with the original CA-rules which produce the input
configurations. The result of this experiment shows that in 2-dimensional 2-state
CAs the original CA-rules are reproduced by a sequence of input configurations.
We also conducted a similar experiment for 2-dimensional 3-state CAs, and
verified that the proposed method successfully finds the original CA-rules.

4.2 Discovering New 2-dimensional 2-state CA-rules

In this experiment, we use the following 1-dimensional 2-state CA.

– A neighborhood consists of 3 square cells: a central cell and its adjacent
neighbors on each side. The state of a cell is either 0 or 1.

– A configuration consists of 100 arrayed cells. The initial configuration S0 has
a centered cell with the state 1 and all the other cells have the state 0.

– A sequence of configurations S0, . . . , S20 are produced by the CA-rules such
that: (1) if a neighborhood contains exactly one cell of the state 1, the next
state of the central cell is 1; (2) otherwise the next state of the cell is 0.

Such a 1-dimensional CA produces 2-dimensional patterns. Figure 5 illus-
trates an example of an evolving 1-dimensional CA with 7 cells with 3 times
applications of CA-rules. Thus, a 1-dimensional configuration Si (0 ≤ i ≤ 20)

Fig. 5. Evolution of a 1-dimensional CA

is identified with the corresponding 2-dimensional configuration S ′i which is ob-
tained by vertically arranging Sj (j ≤ i) downward in the 100× 21 grid.

We used such 2-dimensional configurations S ′0, . . . , S
′
20 as an input. As a

result, we obtained the neighborhood, the condition tree, and the decision tree
of Figure 6. The meaning of the figure is the same as that of Figure 4.

It is worth noting that the obtained neighborhood (a) is 2-dimensional. The
condition tree (b) means that: Con0(R) = c3 and Con1(R) = c0 + c1 + c2. The
decision tree (c) represents the following if-then rules:

N1,0 : if Con0(R) = 0 and Con1(R) 6= 1 then NC1,0 = 0,

N2,0 : if Con0(R) = 0 and Con1(R) = 1 then NC2,0 = 1,

N1,1 : if Con0(R) = 1 then NC1,1 = 1.

Viewing c3 as the central cell in the neighborhood, these rules are interpreted
as follows: (N1,0) When the state of a central cell is 0 and the number of cells



Fig. 6. Experimental result

of the state 1 in the neighborhood is not 1, the state remains 0; (N2,0) When
the state of a central cell is 0 and the number of cells of the state 1 in the
neighborhood is exactly 1, the state changes to 1; (N1,1) When the state of a
central cell is 1, the state remains 1. Applying these rules to the initial con-
figuration S′0 produces configurations S′1, . . . , S

′
20, which coincide with the input

configurations. This result shows that the procedure discovers new 2-dimensional
CA-rules which reproduce the same pattern produced by a 1-dimensional CA.
By this experiment, it is observed that the proposed method not only reproduces
the original CA-rules, but can also discover new rules in different dimensions.

5 Conclusion

In this paper, we developed techniques for automatic generation of cellular au-
tomata rules. We first extracted cases from input CA configurations then built
a condition tree and a decision tree. A decision tree correctly classifies every
case and expresses CA-rules which reproduce the input CA configurations. We
showed by experiments that the proposed method can successfully find the orig-
inal CA-rules which generate given 2-dimensional, 2/3-state CA configurations.
It is also shown that 2-dimensional 2-state new CA-rules are discovered from
the input 1-dimensional 2-state CAs. In this paper, we performed experiments
to reconstruct CA-rules from input CA configurations which are produced by
existing CA-rules. On the other hand, in real-life problems input configurations
generally include noise, the goal is then to discover unknown CA-rules if any. In
this case, the relevant neighborhood of a cell would probably fail to converge for
moderate amount of noise and it would be necessary to introduce an appropriate
threshold on the number of conflicting cases. To apply the proposed method in
practice, we will work on further refinement of techniques in future research.

References

1. A. Adamatzky. Identification of Cellular Automata. Taylor& Francis, London, 1994.
2. B. Liu, M. Hu, and W. Hsu. Intuitive representation of decision trees using general

rules and exceptions. In: Proc. AAAI-2000, pp. 615–620, MIT Press, 2000.
3. M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of chaos:

evolving cellular automata to perform computations. Complex Systems 7, pp. 89–
130, 1993.

4. T. Toffoli and N. Margolous. Cellular Automata Machines. MIT Press, 1987.


