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Abstract. Given an abstract argumentation framework ({p,q},{(p,q)}) in which
an argument p attacks another argument q, argumentation semantics normally con-
cludes that p is accepted and q is rejected. To reject p, on the other hand, a counter-
argument attacking p is to be introduced. However, a player participating in an ar-
gumentation or a person in the audience of a public debate would have opinions
such that “I do not believe p”, “I still believe q”, or “I do not believe that p at-
tacks q” without any concrete grounds. In this study, we introduce the notions of
AF with beliefs and belief extensions to represent interaction between arguments
and beliefs. Those notions are used for modelling the audience of argumentation,
dialogue between two agents, and inner conflict of an agent.
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1. Introduction

　 An abstract argumentation framework or simply argumentation framework (AF) [1]
provides a simple framework for representing and reasoning about arguments. Given
AF = ({p,q},{(p,q)}) in which an argument p attacks another argument q, argumen-
tation semantics normally concludes that p is accepted and q is rejected. To reject p, on
the other hand, a counter-argument attacking p is to be introduced. However, a player
participating in an argumentation or a person in the audience of a public debate would
have opinions such that “I do not believe p”, “I still believe q”, or “I do not believe that
p attacks q” without any concrete grounds. In [2], the authors say:

Consider, for example, when a member of audience of a TV debate listens to the de-
bate at home, she can produce the abstract argumentation graph based on the argu-
ments and counterarguments exchanged. Then she can identify a probability function
to represent the belief she has in each of the arguments. So she may disbelieve some
of the arguments based on what she knows about the topic. Furthermore, she may
disbelieve some of the arguments that are unattacked. As an extreme, she is at lib-
erty of completely disbelieving all of the arguments (so assign probability 0 to all of
them). If we want to model audiences, where the audience either does not want to or
is unable to add counterarguments to an argument graph being constructed in some
form of argumentation, we need to take the beliefs of the audience into account, and
we need to consider which arguments they believe or disbelieve.

1Corresponding Author: Chiaki Sakama, sakama@wakayama-u.ac.jp.



We share the motivation of this study with this statement, while we do not agree
with the modelling in which a person in the audience identifies a probability function
and computes probabilities of each argument. Rather, it would be natural to represent
(dis)belief of arguments as formulas like Bp or ¬Bp where B represents belief and p is
an argument.

In this study, we introduce the framework of AF with beliefs (AFB) to represent
interaction between arguments and beliefs. In AFB an agent’s beliefs are added to the
argumentation graph and interact with arguments. We introduce axioms for interlinking
arguments and beliefs, and compute belief extensions that represent (dis)believed argu-
ments as well as accepted arguments. We apply the framework to modelling the audience
of argumentation, dialogue between two agents, and inner conflict of an agent. The rest
of this paper is organized as follows. Section 2 introduces a framework of AF with be-
liefs. Section 3 applies the framework to dialogues between two agents. Section 4 uses
the framework for representing inner conflict of an agent. Section 5 addresses related
work and Section 6 summarizes the paper.

2. AF with Belief

We consider a language that contains a finite set of propositional variables (or atoms)
A = {p,q,r, . . .} and the logical connectives ¬, ∨, ∧, ⊃ and ≡. An argumentation frame-
work (AF) is a pair (A,R) where A ⊆ A is a finite set of arguments and R ⊆ A×A is
an attack relation. For an AF (A,R), an argument p attacks an argument q if (p,q) ∈ R.
An AF is represented as a directed graph in which nodes represent arguments and edges
represent attacks. We write p → q iff (p,q) ∈ R.2 p ↔ q is an abbreviation of p → q and
q → p. A set S of arguments attacks an argument p iff there is an argument q ∈ S that
attacks p. A set S of arguments is conflict-free if there are no arguments p,q ∈ S such
that p attacks q. A set S of arguments defends an argument p if S attacks every argument
that attacks p. We write D(S) = { p | S defends p}.

The semantics of AF is defined as the set of designated extensions. The following
four extensions are introduced in [1]. Given AF = (A,R), a conflict-free set of arguments
S ⊆ A is: (i) a complete extension iff S = D(S); (ii) a stable extension iff S attacks each
argument in A\S; (iii) a preferred extension iff S is a maximal complete extension of AF
(wrt ⊆); (iv) a grounded extension iff S is the minimal complete extension of AF (wrt
⊆). We often abbreviate complete, stable, preferred, and grounded extensions as co, st,
pr, and gr, respectively. When we refer to AF with σ extensions, it means AF with one
of the above four extensions, i.e., σ ∈ {co,st, pr,gr}. An argumentation semantics σ is
universal if any AF has at least one σ extension. Among the four semantics, co, pr, gr
are universal but st is not.

In this paper we consider agents playing different roles: a person in the audience
of a public debate, a person participating in a dialogue, or a person arguing with one-
self at an intrapersonal level. An argumentation framework consists of arguments and
attacks, then an agent possibly has two types of beliefs—belief on arguments and belief
on attacks. If an agent a believes an argument p (resp. an attack p → q) to be true, it is
represented as Ba p (resp. Ba(p → q)). When the agent’s identification is unimportant, a

2Throughout the paper, logical implication is represented by ⊃ and is distinguished from the attack relation
→.



is omitted and it is simply written as Bp or B(p → q). An agent’s disbelieving p (resp.
p → q) is represented by ¬Bp (resp. ¬B(p → q)). Beliefs are possibly nested, for in-
stance, BBp represents that an agent believes that he/she believes p. In this paper, beliefs
are nested at most two times. Technically, we handle p→ q, p↔ q, (¬)Bp, (¬)B(p→ q)
or (¬)B(p ↔ q) as an atom, so B is not an operator in modal epistemic logic. For in-
stance, p → q is considered an atom ‘p attacks q’ and Bp (resp. ¬B(p → q) ) is con-
sidered an atom ‘believe p’ (resp. ‘disbelieve p attacks q’). In this setting, the “atom”
¬¬Bp is identified with Bp. Note that atoms Bp and ¬Bp are not related in the usual way
of classical logic. To encode their semantic relation, we use attack relations Bp ↔¬Bp
(Definition 2.2). We do not consider the argument of the form ¬p, but it is also encoded
as an argument q with the attack relations q ↔ p.

Given an argumentation framework AF = (A,R), the set BAF of belief atoms over
AF is defined as BAF = {Bp, ¬Bp | p ∈ A}∪{B(p → q), ¬B(p → q) | (p,q) ∈ R}.

Definition 2.1 (AF with belief) Let AF = (A,R) be an argumentation framework. Then,
AF with belief (or AFB) is defined as a triple Γ = (A,R,S) where S ⊆ BAF . Γ is often
written as (AF,S).

Definition 2.2 (attacks over beliefs) Let AF = (A,R) be an argumentation framework.
Then, define RB = R ∪ {(¬Bp, p), (¬Bp,Bp), (Bp,¬Bp) | p ∈ A}.

RB introduces attacks over belief atoms. Bp and ¬Bp attack each other. In addition,
if an agent does not believe p, she does not accept p. This is represented by the attack
¬Bp → p.3

Definition 2.3 (attack axiom) Let p and q be arguments. Then

(AT) Bp∧B(p → q) ⊃ ¬Bq

is called the attack axiom.

The attack axiom (AT) says that if an agent believes an argument p and the attack
relation p → q, then the agent disbelieves the argument q. (AT) is rewritten as

Bq∧B(p → q) ⊃ ¬Bp or Bp∧Bq ⊃ ¬B(p → q).

Definition 2.4 (clAT (S)) Given S ⊆ BAF , define clAT (S) ⊆ BAF as the smallest set of
belief atoms satisfying the following conditions:

1. S ⊆ clAT (S).
2. If Bp ∈ clAT (S) and B(p → q) ∈ clAT (S), then ¬Bq ∈ clAT (S).
3. If Bq ∈ clAT (S) and B(p → q) ∈ clAT (S), then ¬Bp ∈ clAT (S).
4. If Bp ∈ clAT (S) and Bq ∈ clAT (S), then ¬B(p → q) ∈ clAT (S).

The set clAT (S) is consistent if it does not contain {Bp, ¬Bp | p ∈ A } nor {B(p →
q), ¬B(p → q) | p,q ∈ A } as a subset. Given AF = (A,R), define clAT (S)A = clAT (S)∩
{Bp, ¬Bp | p ∈ A} and clAT (S)R = clAT (S)∩{B(p → q), ¬B(p → q) | (p → q) ∈ R}.

3We do not consider an argument of the form ¬p, so the attacks Bp →¬p or B¬p → p is not included.
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Figure 1. AFBs in Example 2.1

clAT (S) represents a set of belief atoms closed under the application of the axiom (AT).

Definition 2.5 (belief extension) Let Γ= (A,R,S) be an AFB. Then, a set E is a σ belief
extension of Γ if E is a σ extension of AF = (X ,Y ) where X = A∪ clAT (S)A, Y = ((X ×
X)∩RB)\{(p → q) | ¬B(p → q) ∈ clAT (S)R}, and σ ∈ {co,st, pr,gr}.

By definition, belief extensions are extensions of an argumentation graph that con-
sists of arguments, belief over arguments, and attacks over them. Arguments in A and
belief atoms in clAT (S)A possibly interact with each other in AF = (X ,Y ). When an agent
disbelieves an attack p → q in clAT (S)R, the attack is cancelled and is removed from Y .

As ¬Bp attacks p, no σ belief extension contains both p and ¬Bp for any p ∈ A .
This means that AFB does not involve the Moore’s paradox such that “an agent accepts
an argument p but she disbelieves it”. Also Bp and ¬Bp mutually attack the other in RB,
so no σ belief extension contains both Bp and ¬Bp for any p ∈ A . On the other hand,
there is a case that a σ belief extension contains neither Bp nor ¬Bp for some p ∈ A .
This is because the formula Bp∨ ¬Bp is not valid in our framework. That is, there may be
an argument (or an attack) which an agent neither believes nor disbelieves. Technically,
this is justified by handling Bp and ¬Bp as atoms, i.e., the formula Bp∨ ¬Bp is viewed
as “believe p∨disbelieve p” which is not a tautology.

Suppose an agent in the audience of a public debate. Then different belief states on
an AF are represented by AFBs as follows.

Example 2.1 Let AF = ({p,q},{(p,q)}) and σ ∈ {co,st, pr,gr}. Then,
(1) Γ1 = (AF,{Bp,B(p → q)}) has the σ belief extension E1 = {p,Bp,¬Bq}.
(2) Γ2 = (AF,{¬Bp}) has the σ belief extension E2 = {¬Bp,q}.
(3) Γ3 = (AF,{Bq,¬B(p → q)}) has the σ belief extension E3 = {p,q,Bq}.
(4) Γ4 = (AF,{Bq,B(p → q)}) has the σ belief extension E4 = {¬Bp,Bq,q}.
(5) Γ5 = (AF,{Bp,Bq,B(p → q)}) has the grounded belief extension E5 =∅; four stable
(or preferred) belief extensions E6 = {p,Bp,¬Bq}, E7 = {p,Bp,Bq}, E8 = {q,¬Bp,Bq},
and E9 = {¬Bp,¬Bq}; and five complete belief extensions E5–E9.

Five different AFBs of Example 2.1 are illustrated in Figure 1. In Γ1 an agent believes
p and the attack p → q, which implies ¬Bq by (AT). The belief extension E1 then rep-
resents that p is accepted and q is rejected, and the agent believes p but disbelieves q.
In Γ2, on the other hand, an agent disbelieves p. Then p is rejected and, as a result, q is
accepted in E2. In Γ3 an agent believes q and disbelieves the attack p → q. In this case,
the attack is cancelled in Γ3 and both p and q are accepted. By contrast, in Γ4 an agent
believes the attack p → q. Then, Bq and B(p → q) deduce ¬Bp by (AT), and ¬Bp attacks
p by (¬Bp, p) in RB. As a result, E4 represents that an agent believes q and disbelieves p,



so that p is rejected and q is accepted. In Γ5, Bp and B(p → q) deduce ¬Bq, and Bq and
B(p → q) deduce ¬Bp by (AT). As a result, it becomes clAT (S)A = {Bp,Bq,¬Bp,¬Bq}
which is inconsistent. In this case, the grounded belief extension becomes the empty set,
while four different stable (preferred) belief extensions exist.

Since co, pr, gr are universal, Γ=(AF,S) has a σ belief extension if AF =(A,R) has
a σ extension for σ ∈ {co, pr,gr}. For σ = st, on the other hand, when AF = (A,R) has
a stable extension, Γ = (AF,S) may not have a stable extension; and when AF = (A,R)
has no stable extension, Γ = (AF,S) may have a stable belief extension.

Example 2.2 (1) Consider AF = ({p,q},{(p,q),(q,q)}) and AFB = (AF,{¬Bp}).
Then AF has the stable extension {p}, while AFB has no stable belief extension. (2) Con-
sider AF = ({p},{(p, p)}) and AFB = (AF,{¬Bp}). Then AF has no stable extension,
while AFB has the stable belief extension {¬Bp}.

An AFB Γ = (A,R,S) is rational if clAT (S) is consistent. A rational AFB represents
an agent who has a consistent belief over AF.

Proposition 2.1 Let Γ = (A,R,S) be a rational AFB. Then clAT (S)A ⊆ E holds for any
σ belief extension E of Γ where σ ∈ {co,st, pr,gr}.

Proof: Since clAT (S) is consistent, each belief atom in clAT (S)A is not attacked by any
argument in A∪clAT (S)A. Then those belief atoms are included in any σ belief extension
of Γ. Hence, the result holds. 2

Proposition 2.2 Let Γ = (A,R,S) be a rational AFB. If B(p ↔ q) is in clAT (S), there is
no σ belief extension E such that {Bp,Bq} ⊆ E where σ ∈ {co,st, pr,gr}.

Proof: Suppose that there is a σ belief extension E such that {Bp,Bq} ⊆ E. Then
{Bp,Bq} ⊆ clAT (S)A because any belief atom in E is an element of clAT (S)A. Since
Bp∧B(p → q) implies ¬Bq by (AT), ¬Bq ∈ clAT (S)A. This contradicts the assumption
that clAT (S) is consistent. 2

Proposition 2.3 Let Γ = (A,R,S) be a rational AFB. If B(p → p) is in clAT (S), there is
no σ belief extension E such that Bp ∈ E where σ ∈ {co,st, pr,gr}.

Proof: The result is obtained by putting p = q in Proposition 2.2. 2

By Propositions 2.2 and 2.3, we can say that if a rational AFB has a σ belief ex-
tension such that {Bp,Bq} ⊆ E (resp. Bp ∈ E) then an agent does not believe the attack
p ↔ q (resp. p → p).

3. Dialogue

In this section, we consider dialogues between two agents a and b. Belief of each agent
is represented by Ba and Bb, respectively. To distinguish arguments made by each agent,
we often attach subscripts to arguments like pa and qb where pa means that an argument
p is made by an agent a.
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Figure 2. AFBs in Example 3.1

Definition 3.1 (dialogue) Let a and b be two agents. Then a dialogue between a and b
is defined as a pair ∆ = (Γa,Γb) where Γa = (AF,Sa) and Γb = (AF,Sb) are AFBs.

By definition, a dialogue consists of two AFBs such that each AFB represents belief
of an agent wrt a common AF.

Definition 3.2 ((in)sincere agent) Let Γa = (AF,Sa) be an AFB with AF = (A,R). The
agent a is sincere if pa ∈ A implies Ba pa ∈ Sa. Otherwise, a is insincere.

Definition 3.2 presents that a sincere agent a makes an argument pa only if she
believes it. Attacks over beliefs (Definition 2.2) and the attack axiom (Definition 2.3)
are respectively modified under the multiagent setting as follows. Given AF = (A,R),
RB = R ∪ {(¬Bi p j, p j), (¬Bi p j,Bi p j), (Bi p j,¬Bi p j) | p j ∈ A and i, j ∈ {a,b}}, and

(AT) Bi p j ∧Bi(p j → qk) ⊃ ¬Biqk where p j,qk ∈ A and i, j,k ∈ {a,b}.

Definition 3.3 (static belief extension) Let ∆ = (Γa,Γb) be a dialogue where Γa =
(AF,Sa) and Γb =(AF,Sb). Then, a pair (E,F) is a static σ belief extension (or σ -SBE for
short) of ∆ if E (resp. F) is a σ extension of AF = (X ,Y ) where X = A∪clAT (Sa)A (resp.
X = A∪ clAT (Sb)A), Y = ((X ×X)∩RB) \ {(p → q) | ¬Ba(p → q) ∈ clAT (Sa)R} (resp.
Y = ((X ×X)∩RB)\{(p → q) | ¬Bb(p → q) ∈ clAT (Sb)R}), and σ ∈ {co,st, pr,gr}.

A static belief extension represents belief states of each agent and accepted arguments.

Example 3.1 Let AF = ({pa,qb},{(pa,qb)}) and σ ∈ {co,st, pr,gr}. Then,
(1) ∆1 = (Γ1

a,Γ1
b) where Γ1

a = (AF,{Ba(pa → qb),Ba pa}) and Γ1
b = (AF,{Bb(pa →

qb),Bbqb}) has the σ -SBE ({pa,Ba pa,¬Baqb},{qb,Bbqb,¬Bb pa}).
(2) ∆2 =(Γ1

a,Γ2
b) where Γ2

b =(AF,{¬Bb(pa → qb),Bbqb}) has the σ -SBE ({pa,Ba pa,¬Baqb},
{pa,qb,Bbqb}).
(3) ∆3 =(Γ3

a,Γ1
b) where Γ3

a =(AF,{Ba(pa → qb)}) has the σ -SBE ({pa},{qb,Bbqb,¬Bb pa}).
(4) ∆4 =(Γ4

a,Γ1
b) where Γ4

a =(AF,{¬Ba pa,Ba(pa → qb)}) has the σ -SBE ({¬Ba pa,qb},
{qb,Bbqb,¬Bb pa}).

Five different AFBs used in dialogues of Example 3.1 are illustrated in Figure 2. In these
dialogues, an agent b makes an argument q and an agent a makes a counter-argument p.
In ∆1, a believes her argument pa and the attack pa → qb, which results in disbelieving
the argument qb by (AT). Similarly, b believes his argument qb and the attack pa → qb,
which results in disbelieving the argument pa by (AT). The situation changes when the



agent b disbelieves the attack pa → qb in ∆2. In this case, the attack is cancelled in Γ2
b and

pa is included in the σ belief extension of Γ2
b. In ∆1 and ∆2, two agents are sincere. By

contrast, ∆3 and ∆4 represent situations in which b is sincere but a is insincere. In ∆3 an
agent a makes an argument pa but she has no belief on it (but she believes that pa attacks
qb). In this case, the σ belief extension of Γ3

a contains no belief on arguments by a. In ∆4,
a makes an argument pa but she disbelieves it. As ¬Ba pa attacks pa, pa is not included
in the σ belief extension of Γ4

a. ∆3 and ∆4 represent different types of dishonesty—∆3
represents bluffing or bullshitting and ∆4 represents lying [3]. Such dishonest arguments
appear in practice for the purpose of rejecting an unwanted argument by making up a
fake argument.

Definition 3.3 characterizes a situation in which beliefs of agents do not change dur-
ing a dialogue. On the other hand, belief of an agent may change during a dialogue when
her argument is attacked by a counter-argument. We next characterize such a situation.
In what follows, Bt

a p (resp. Bt
a(p → q)) means that a believes p (resp. p → q) at time

t where t ≥ 0 is an integer representing discrete time steps. Given AF = (A,R), define
BT

AF = {Bt
i p, ¬Bt

i p | p ∈ A and t ∈ T }∪{Bt
i(p → q), ¬Bt

i(p → q) | (p,q) ∈ R and t ∈
T } where i ∈ {a,b} and T is the set of integers representing time.

Definition 3.4 (belief change axiom) Let a be an agent and p, q arguments. Then,

(BC) Bt
a p∧Bt

a(p → q)⊃ ¬Bt+1
a q (t ∈ T )

is called the belief change axiom.

(BC) represents that when an agent a believes an argument p and the attack p → q
at time t, a does not believe q at time t + 1. (BC) represents a dynamic version of the
attack axiom (AT). Like (AT), (BC) is rewritten as

Bt+1
a q∧Bt

a(p → q) ⊃ ¬Bt
a p or Bt

a p∧Bt+1
a q ⊃ ¬Bt

a(p → q).

Definition 3.5 (inertia rule) Let a be an agent and p, q arguments. The default rules:

(IR)
Bt

aα : Bt+1
a α

Bt+1
a α

and
¬Bt

aα : ¬Bt+1
a α

¬Bt+1
a α

(t ∈ T )

are called the inertia rules, where α is either an argument p or an attack p → q.

(IR) are normal default rules in default logic [4] meaning that if (¬)Bt
aα is the

case and (¬)Bt+1
a α is consistently assumed then conclude (¬)Bt+1

a α . Attacks over
beliefs are modified for the dynamic setting as follows. Given AF = (A,R), RD =
R ∪ {(¬Bt

i p j, p j), (¬Bt
i p j,Bt

i p j), (Bt
i p j,¬Bt

i p j) | p j ∈ A, i, j ∈ {a,b} and t ∈ T }.

Definition 3.6 (clD(S)) Given S⊆BT
AF , define clD(S)⊆BT

AF as the smallest set of belief
atoms satisfying the following conditions:

1. S ⊆ clD(S).
2. If Bt

a p ∈ clD(S) and Bt
a(p → q) ∈ clD(S), then ¬Bt+1

a q ∈ clD(S).
3. If Bt+1

a q ∈ clD(S) and Bt
a(p → q) ∈ clD(S), then ¬Bt

a p ∈ clD(S).
4. If Bt

a p ∈ clD(S) and Bt+1
a q ∈ clD(S), then ¬Bt

a(p → q) ∈ clD(S).
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Figure 3. AFBs in Example 3.2

5. If Bt
aα ∈ clD(S) and {Bt+1

a α}∪ clD(S) is consistent, then Bt+1
a α ∈ clD(S).

6. If ¬Bt
aα ∈ clD(S) and {¬Bt+1

a α}∪ clD(S) is consistent, then ¬Bt+1
a α ∈ clD(S).

Given AF = (A,R), define clD(S)A = clD(S)∩{Bt
i p, ¬Bt

i p | p ∈ A, i ∈ {a,b}, t ∈ T }
and clD(S)R = clD(S)∩{Bt

i(p → q), ¬Bt
i(p → q) | (p → q) ∈ R, i ∈ {a,b}, t ∈ T }.

clD(S) represents a set of belief atoms closed under the application of the axiom (BC)
and the inertia rule (IR).

Definition 3.7 (dynamic belief extension) Let ∆ = (Γa,Γb) be a dialogue where Γa =
(AF,Sa) and Γb = (AF,Sb). Then, a pair (E,F) is a dynamic σ belief extension (or σ -
DBE for short) of ∆ if E (resp. F) is a σ extension of AF =(X ,Y ) where X =A∪clD(Sa)A
(resp. X =A∪clD(Sb)A), Y = ((X ×X)∩RD)\{(p→ q) | ¬Bt

a(p→ q)∈ clD(Sa)R} (resp.
Y = ((X ×X)∩RD)\{(p→ q) | ¬Bt

b(p→ q)∈ clD(Sb)R}), t ∈ T , and σ ∈ {co,st, pr,gr}.

Example 3.2 Consider a dialogue ∆ = (Γa,Γb) with Γa = (AF,{B1
a(pa → qb),B1

a pa})
and Γb = (AF,{B1

b(pa → qb),B0
bqb,B1

b pa}) where AF = ({pa,qb},{(pa,qb)}). In this
dialogue, b first makes an argument qb at t = 0 and she believes it (B0

bqb). Next, a makes
a counter-argument pa with the attack pa → qb at time t = 1, and he believes them
(B1

a(pa → qb) and B1
a pa). b also believes the argument pa and the attack pa → qb at t = 1

(B1
b(pa → qb) and B1

b pa). Then the belief state of each agent is computed as follows.
(1) B1

a pa and B1
a(pa → qb) imply ¬B2

aqb by (BC).
(2) B1

b pa and B1
b(pa → qb) imply ¬B2

bqb by (BC).
(3) B0

bqb implies B1
bqb by (IR).

(4) B1
a pa and B1

b pa respectively imply B2
a pa and B2

b pa by (IR).
(5) B1

a(pa → qb) and B1
b(pa → qb) respectively imply B2

a(pa → qb) and B2
b(pa → qb) by

(IR).
(6) B1

bqb does not imply B2
bqb by (IR) and (2).

As a result, ∆ has the σ -DBE (E,F) such that E = {pa,B1
a pa,B2

a pa,¬B2
aqb} and

F = {pa,B0
bqb,B1

bqb,B1
b pa,B2

b pa,¬B2
bqb} where σ ∈ {co,st, pr,gr}.

Figure 3 illustrates the belief change of agents in Example 3.2. Note that B2
bqb is not

implied in (6) of Example 3.2. This is because ¬B2
bqb is in clD(Sb) by (2), so that

{B2
bqb}∪ clD(Sb) is inconsistent.

When an agent gives credit to an argument made by another agent, lying or bluffing
will succeed to deceive the other.

Example 3.3 Consider a dialogue ∆ = (Γa,Γb) with Γa = (AF,{B1
a(pa → qb),¬B1

a pa})
and Γb = (AF,{B1

b(pa → qb),B0
bqb,B1

b pa}). In this dialogue, Γb is the same AFB as in



Example 3.2, while a disbelieves his argument pa in Γa. Then the belief state of each
agent is computed as follows.
(1) B1

b pa and B1
b(pa → qb) imply ¬B2

bqb by (BC).
(2) B0

bqb implies B1
bqb by (IR).

(3) ¬B1
a pa and B1

b pa respectively imply ¬B2
a pa and B2

b pa by (IR).
(4) B1

a(pa → qb) and B1
b(pa → qb) respectively imply B2

a(pa → qb) and B2
b(pa → qb) by

(IR).
(5) B1

bqb does not imply B2
bqb by (IR) and (1).

As a result, ∆ has the σ -DBE (E,F) such that E = {¬B1
a pa,¬B2

a pa,qb} and F =
{pa,B0

bqb,B1
bqb,B1

b pa,B2
b pa,¬B2

bqb} where σ ∈ {co,st, pr,gr}.

Comparing the result of Example 3.3 with Example 3.1(4), b believes pa and disbe-
lieves qb at time t = 2. As a result, b accepts the argument pa and a successfully deceives
b by lying. By contrast, a disbelieves pa, so he does not accept pa but accepts qb.

4. Inner Conflict

In Section 2 we introduce the notion of a rational AFB that has a consistent set of beliefs
clAT (S). It may happen, however, that an agent has inconsistent beliefs on arguments
and attacks. Such a situation is given as Γ5 in Example 2.1(5) in which an agent has
the belief {Bp,Bq,B(p → q)} that is inconsistent under the axiom (AT). Γ5 has the four
stable/preferred belief extensions that conflict with each other, while each extension is
an alternative consistent set of beliefs of an agent.

In this section, we represent an inner conflict of beliefs of an agent such that “an
agent believes that he believes an argument that in fact he does not believe” (BBp ∧
¬Bp) or “an agent believes that he disbelieves an argument that in fact he believes”
(B¬Bp∧Bp). For example, suppose a patient who is advised by a doctor that he is alcohol
dependent. Then the former represents a situation that the patient believes that he believes
the fact that in fact he disbelieves, while the latter represents a situation that the patient
believes that he disbelieves the fact that in fact he believes. Such belief states are known
as self-deception [5,6]. Self-deception is captured as an AFB in which beliefs (and beliefs
over beliefs) of an agent are conflicting.

To represent such belief states of an agent, we consider second-order nested beliefs.
Given an argumentation framework AF = (A,R), the set NBAF of nested belief atoms
over AF is defined as NBAF = {BBp, B¬Bp | p ∈ A}. Define BN

AF = BAF ∪NBAF .
For simplicity, we do not consider negation of nested beliefs like ¬BBp or ¬B¬Bp, nor
nested beliefs over attacks like (¬)BB(p → q) or (¬)B¬B(p → q). As before, nested
beliefs are handled as atoms.

AFBs and attacks over beliefs are extended to handle nested beliefs.

Definition 4.1 (AF with nested belief) Let AF = (A,R) be an argumentation frame-
work. Then, AF with nested belief (or AFNB) is defined as a triple Λ = (A,R,S) where
S ⊆ BN

AF . Λ is often written as (AF,S).

Definition 4.2 (attacks over nested beliefs) Let AF =(A,R) be an argumentation frame-
work. Then, define RNB = RB ∪ {(BBp,B¬Bp), (B¬Bp,BBp) | p ∈ A} where RB is the
set defined in Definition 2.2.



In RNB, BBp↔B¬Bp represents that it does not happen that an agent simultaneously
believes both Bp and ¬Bp.

Next we introduce two axioms for nested beliefs.

Definition 4.3 (introspection axioms) Let p be an argument. Then, define

(PI) : Bp ⊃ BBp,
(NI) : ¬Bp ⊃ B¬Bp.

(PI) and (NI) are called the introspection axioms.

Definition 4.4 (clAPN(S)) Given S ⊆ BAF , define clAPN(S)⊆ BN
AF as the smallest set of

(nested) belief atoms satisfying the following conditions:

1. S ⊆ clAT (S)⊆ clAPN(S).
2. If Bp ∈ clAPN(S), then BBp ∈ clAPN(S).
3. If ¬Bp ∈ clAPN(S), then B¬Bp ∈ clAPN(S).

The set clAPN(S) is consistent if {Bα, ¬Bα} ̸⊆ clAPN(S) where α is either an argument
or an attack. An AFNB Λ = (A,R,S) is rational if clAPN(S) is consistent. Given AF =
(A,R), define clAPN(S)A = clAPN(S)∩{Bp, ¬Bp, BBp, B¬Bp | p ∈ A} and clAPN(S)R =
clAPN(S)∩{B(p → q), ¬B(p → q) | (p → q) ∈ R}.

clAPN(S) represents a set of (nested) belief atoms closed under the application of axioms
(AT), (PI), and (NI).

Definition 4.5 (nested belief extension) Let Λ = (A,R,S) be an AFNB. Then, a set E is
a σ nested belief extension (or σ -NBE for short) of Λ if E is a σ extension of AF =(X ,Y )
where X = A∪ clAPN(S)A, Y = ((X ×X)∩RNB)\{(p → q) | ¬B(p → q) ∈ clAPN(S)R},
and σ ∈ {co,st, pr,gr}.

Example 4.1 Let AF = ({p},∅) and σ ∈ {co,st, pr,gr}. Then,
(1) Λ1 = (AF,{Bp}) has the σ -NBE E1 = {p,Bp,BBp}.
(2) Λ2 = (AF,{¬Bp}) has the σ -NBE E2 = {¬Bp,B¬Bp}.
(3) Λ3 = (AF,{Bp,¬Bp}) has the four stable (or preferred) NBEs: E3 = {p,Bp,BBp},
E4 = {p,Bp,B¬Bp}, E5 = {¬Bp,BBp}, and E6 = {¬Bp,B¬Bp}.

Three different AFNBs of Example 4.1 are illustrated in Figure 4. In all three AFNBs, Bp
produces BBp by (PI) and ¬Bp produces B¬Bp by (NI), where BBp and B¬Bp attack
each other. Λ1 and Λ2 are the cases where no inner conflict arises. In Λ3, on the other
hand, an agent has conflicting beliefs Bp and ¬Bp, and there are consistent combinations
of beliefs and nested beliefs as four stable (or preferred) NBEs. Of which, E4 and E5
represent inner conflicts of an agent and they correspond to the belief states of self-
deception Bp∧B¬Bp and ¬Bp∧BBp introduced at the beginning of this section. By
definition, self-deception may arise when an agent has an inconsistent belief over AF .

Proposition 4.1 If a rational AFNB Λ= (A,R,S) has a σ -NBE E, then {BBp,¬Bp} ̸⊆ E
and {B¬Bp,Bp} ̸⊆ E where σ ∈ {co,st, pr,gr}.

Proof: When Λ = (A,R,S) is rational, ¬Bp ∈ clAPN(S) implies Bp ̸∈ clAPN(S) thereby
BBp ̸∈ clAPN(S). Hence, {BBp,¬Bp} ̸⊆ E. {B¬Bp,Bp} ̸⊆ E is shown similarly. 2
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Figure 4. AFNBs in Example 4.1

5. Related Work

There are several studies targeting at arguments and beliefs. The studies [2,7] introduce
a probabilistic semantics for abstract argumentation that assigns probabilities or degrees
of belief to individual arguments. Given AF = (A,R), introduce a probability function
P : 2A → [0,1] that assigns a probability to each extension E of AF . Then, for each
a ∈ A, the probability P(a) is defined as P(a) = ∑a∈E⊆A P(E) that represents the degree
of belief that an argument a is in an extension of AF . In this setting, they introduce the
notion of epistemic extension of P as the set S of arguments such that P(a) > 0.5 for
any a ∈ S. They investigate conditions of probability functions that agree with intuition
on the interrelationships of arguments and attacks. The approach based on probabilities
provides a quantitative representation of beliefs over arguments, which is in contrast to
our qualitative approach specifying beliefs by formulas.

Epistemic argumentation framework (EAF) [8] encodes the belief of an agent who
reasons about arguments. An EAF is represented as a pair (AF,φ) where AF is an abstract
argumentation framework and φ is an epistemic formula called an epistemic constraint.
An EAF (AF,φ) represents the view of an agent who believes that φ is true in AF . The
semantics of an EAF is given by an ω-epistemic labelling set SL where each S ∈ SL is
an ω-labelling of AF with ω ∈ {co,st,gr, pr} and SL is a ⊆-maximal set of ω-labellings
of AF that satisfy φ . By definition, an ω-epistemic labelling set is a collection of ω-
labellings of an AF that reflect the beliefs of an agent. EAF and AFB share a common
purpose to encode the belief of an agent on a given AF, while the semantic frameworks
are different from each other. In EAF the epistemic formula φ works as an external
constraint over the labellings of an AF. Then every element S ∈ SL is an ω-labelling of
the original AF, and it does not contain any epistemic formula. In AFB, on the other
hand, beliefs of an agent are introduced to AF and interact with arguments in AF. As a
result, σ belief extensions contain belief atoms in general.

Epistemic abstract argumentation framework (EAAF) [9] extends the abstract AF
by introducing epistemic arguments and attacks. An epistemic attack from a to b is de-
fined as: a defeats b if a occurs in at least one extension (strong epistemic attack) or in all
extensions and at least one (weak epistemic attack). Arguments defeated through epis-
temic attacks are called epistemic arguments. The semantics of an EAAF (A,R,Ψ,Φ),
where Ψ (resp. Φ) is a set of weak (resp. strong) epistemic attacks, is given by a set W of
sets of arguments in A called world view. A world view represents epistemically accept-
able arguments depending on the condition of their attacking arguments, while EAAF
does not handle belief atoms in its framework.



The study [10] introduces a debate game between two players in which a player may
provide false or inaccurate arguments as a tactic to win the game. A player lies if she
makes an argument that she disbelieves, or a player bullshits if he makes an argument
on which he has no belief. It investigates situations in which a player has a chance to
win a game using (dis)honest arguments and argues the possibility of detecting dishonest
arguments. The study formulates debate games in abstract argumentation frameworks,
while it does not represent beliefs on arguments/attacks as done in this paper.

In this paper, we introduce dynamic belief extensions representing belief change of
agents in a dialogue. Belief revision in argumentation has been studied in the literature
[11] in which belief change is represented by the change of extensions over time. In
our approach, belief change of an agent is represented in a single extension using belief
atoms with time.

6. Conclusion

This paper introduced a framework that can represent interaction between arguments and
beliefs. The AFB is used for representing belief states of players and the audience of
argumentation. In two-persons dialogue, AFB can distinguish belief states of (in)sincere
players. Belief change of a player is represented by dynamic belief extensions that can
also model deceptive dialogues. Finally, inner conflicts of an agent are expressed using
nested beliefs, and self-deception is realized by belief extensions of AFNB. Considera-
tion on the epistemic aspect of argumentation has been done by several studies, but, to
the best of our knowledge, this is the first attempt to formulate the interaction between
argument and belief in the context of abstract argumentation frameworks. An interest-
ing research issue is to represent and reason about argument and belief using structured
argumentation.
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