
Coordination between Logical Agents

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences
Wakayama University

Sakaedani, Wakayama 640 8510, Japan
sakama@sys.wakayama-u.ac.jp

2 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101 8430, Japan

ki@nii.ac.jp

Abstract. In this paper we suppose an agent that has a knowledge
base written in logic programming and sets of beliefs under the answer
set semantics. We then consider the following two problems: given two
logic programs P1 and P2, which have the sets of answer sets AS(P1)
and AS(P2), respectively; (i) find a program Q which has the set of
answer sets such that AS(Q) = AS(P1)∪AS(P2); (ii) find a program R
which has the set of answer sets such that AS(R) = AS(P1) ∩ AS(P2).
A program Q satisfying the condition (i) is called generous coordination
of P1 and P2; and R satisfying (ii) is called rigorous coordination of P1

and P2. Generous coordination retains all of the original belief sets of
each agent, but admits the introduction of additional belief sets of the
other agent. By contrast, rigorous coordination forces each agent to give
up some belief sets, but the result remains within the original belief sets
for each agent. We provide methods for constructing these two types of
coordination and discuss their properties.

1 Introduction

In multi-agent systems different agents may have different sets of beliefs, and
agents negotiate and accommodate themselves to reach acceptable agreements.
We call a process of forming such agreements between agents coordination. The
problem is how to settle an agreement acceptable to each agent. The outcome
of coordination is required to be consistent and is desirable to retain original
information of each agent as much as possible.

Suppose an agent that has a knowledge base as a logic program whose se-
mantics is given as the collection of answer sets [7]. Answer sets represent sets
of literals corresponding to beliefs which can be built by a rational reasoner on
the basis of a program [2]. An agent may have (conflicting) alternative sets of
beliefs, which are represented by multiple answer sets of a program. Different
agents have different collections of answer sets in general. We then capture co-
ordination between two agents as the problem of finding a new program which
has the meaning balanced between two programs. Consider, for instance, a logic
program P1 which has two answer sets S1 and S2; and another logic program

P2 which has two answer sets S2 and S3. Then, we want to find a new program
which is a result of coordination between P1 and P2. In this paper, we consider
two different solutions: one is a program Q which has three answer sets S1, S2,
and S3; the other is a program R which has the single answer set S2.

These two solutions provide different types of coordination — the first one
retains all of the original belief sets of each agent, but admits the introduction
of additional belief sets of the other agent. By contrast, the second one forces
each agent to give up some belief sets, but the result remains within the original
belief sets for each agent. These two types of coordination occur in real life. For
instance, suppose the following scenario: to decide the Academy Award of Best
Pictures, each member of the Academy nominates films. Now there are three
members — p1, p2, and p3, and each member can nominate at most two films:
p1 nominates f1 and f2, p2 nominates f2 and f3, and p3 nominates f2. At this
moment, three nominees f1, f2, and f3 are fixed. The situation is represented
by three programs:

P1 : f1 ; f2 ←,

P2 : f2 ; f3 ←,

P3 : f2 ←,

where “;” represents disjunction. Here, P1 has two answer sets: {f1} and {f2}; P2

has two answer sets: {f2} and {f3}; P3 has the single answer set: {f2}. The three
nominees correspond to the answer sets: {f1}, {f2}, and {f3}. A program having
these three answer sets is the first type of coordination. After final voting, the
film f2 is supported by three members and becomes the winner of the Award.
That is, the winner is represented by the answer set {f2}. A program having
this single answer set is the second type of coordination. Thus, these two types
of coordination happen in different situations, and it is meaningful to develop
computational logic for these coordination between agents.

The problem is then how to build a program which realizes such coordination.
Formally, the problems considered in this paper are described as follows.

Given: two programs P1 and P2;

Find: (1) a program Q satisfying AS(Q) = AS(P1) ∪ AS(P2);

(2) a program R satisfying AS(R) = AS(P1) ∩ AS(P2),

where AS(P) represents the set of answer sets of a program P . The program Q
satisfying (1) is called generous coordination of P1 and P2; and the program R
satisfying (2) is called rigorous coordination of P1 and P2. We develop methods
for computing these two types of coordination and verify the results.

The rest of this paper is organized as follows. Section 2 presents definitions
and terminologies used in this paper. Section 3 introduces a framework of co-
ordination between logic programs. Section 4 provides methods for computing
coordination and addresses their properties. Section 5 discusses related issues
and Section 6 summarizes the paper.

2 Preliminaries

In this paper, we suppose an agent that has a knowledge base written in logic
programming. An agent is then identified with its logic program and we use
those terms interchangeably throughout the paper.

A program considered in this paper is an extended disjunctive program (EDP)
which is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (n ≥ m ≥ l ≥ 0)

where each Li is a positive/negative literal, i.e., A or ¬A for an atom A, and not
is negation as failure (NAF). notL is called an NAF-literal. The symbol “;” rep-
resents disjunction. The left-hand side of the rule is the head , and the right-hand
side is the body. For each rule r of the above form, head(r), body+(r), body−(r),
and not body−(r) denote the sets of (NAF-)literals {L1, . . . , Ll}, {Ll+1, . . . , Lm},
{Lm+1, . . . , Ln}, and {notLm+1, . . . , not Ln}, respectively. A disjunction of lit-
erals and a conjunction of (NAF-)literals in a rule are identified with its corre-
sponding sets of (NAF-)literals. A rule r is often written as head(r) ← body+(r),
not body−(r) or head(r) ← body(r) where body(r) = body+(r) ∪ not body−(r).
A rule r is disjunctive if head(r) contains more than one literal. A rule r is an
integrity constraint if head(r) = ∅; and r is a fact if body(r) = ∅. A program P
is NAF-free if body−(r) = ∅ for any rule r in P . A program with variables is se-
mantically identified with its ground instantiation, and we handle propositional
and ground programs throughout the paper.

The semantics of EDPs is given by the answer set semantics [7]. Let Lit be
the set of all ground literals in the language of a program. A set S(⊂ Lit) satisfies
a ground rule r if body+(r) ⊆ S and body−(r)∩S = ∅ imply head(r)∩S 	= ∅. In
particular, S satisfies a ground integrity constraint r with head(r) = ∅ if either
body+(r) 	⊆ S or body−(r) ∩ S 	= ∅. S satisfies a ground program P if S satisfies
every rule in P . When body+(r) ⊆ S (resp. head(r) ∩ S 	= ∅), it is also written
as S |= body+(r) (resp. S |= head(r)).

Let P be an NAF-free EDP. Then, a set S(⊂ Lit) is a (consistent) answer
set of P if S is a minimal set such that

1. S satisfies every rule from the ground instantiation of P ,
2. S does not contain a pair of complementary literals L and ¬L for any L ∈ Lit.

Next, let P be any EDP and S ⊂ Lit. For every rule r in the ground instantiation
of P , the rule rS : head(r) ← body+(r) is included in the reduct PS if body−(r)∩
S = ∅. Then, S is an answer set of P if S is an answer set of PS . An EDP has
none, one, or multiple answer sets in general. The set of all answer sets of P is
written as AS(P). A program P is consistent if it has a consistent answer set.
In this paper, we assume that a program is consistent unless stated otherwise.

A literal L is a consequence of credulous reasoning in a program P (written as
L ∈ crd(P)) if L is included in some answer set of P . A literal L is a consequence
of skeptical reasoning in a program P (written as L ∈ skp(P)) if L is included in
every answer set of P . Clearly, skp(P) ⊆ crd(P) holds for any P . Two programs

P1 and P2 are said to be AS-combinable if every set in AS(P1) ∪ AS(P2) is
minimal under set inclusion.

Example 2.1. Given two programs:

P1 : p ; q ←,

p ← q,

q ← p,

P2 : p ← not q,

q ← not p,

where AS(P1) = {{p, q}} and AS(P2) = {{p}, {q}}. Then, crd(P1) = skp(P1) =
{ p, q }; crd(P2) = { p, q } and skp(P2) = ∅. P1 and P2 are not AS-combinable
because the set {p, q} is not minimal in AS(P1) ∪ AS(P2).

Technically, when two programs P1 and P2 are not AS-combinable, we can
make them AS-combinable by introducing the rule L ← notL for every L ∈ Lit
to each program, where L is a newly introduced atom associated uniquely with
each L.

Example 2.2. In the above example, put P ′
1 = P1 ∪ Q and P ′

2 = P2 ∪ Q with

Q : p ← not p,

q ← not q .

Then, AS(P ′
1) = {{p, q}} and AS(P ′

2) = {{p, q}, {p, q}}, so P ′
1 and P ′

2 are AS-
combinable.

3 Coordination between Programs

Given two programs, coordination provides a program which is a reasonable
compromise between agents. In this section, we introduce two different types of
coordination under the answer set semantics.

Definition 3.1. Let P1 and P2 be two programs. A program Q satisfying the
condition AS(Q) = AS(P1) ∪ AS(P2) is called generous coordination of P1 and
P2; a program R satisfying the condition AS(R) = AS(P1) ∩ AS(P2) is called
rigorous coordination of P1 and P2.

Generous coordination retains all of the answer sets of each agent, but ad-
mits the introduction of additional answer sets of the other agent. By contrast,
rigorous coordination forces each agent to give up some answer sets, but the
result remains within the original answer sets for each agent.

Technically, generous coordination requires two programs P1 and P2 to be
AS-combinable, since answer sets of Q are all minimal. Thus, when we con-
sider generous coordination between two programs, we assume them to be AS-
combinable. Generous coordination between programs that are not AS-combinable
is possible by making them AS-combinable in advance using the program trans-
formation presented in Section 2.

Definition 3.2. For two programs P1 and P2, let Q be a result of generous
coordination, and R a result of rigorous coordination. We say that generous (resp.
rigorous) coordination succeeds if AS(Q) 	= ∅ (resp. AS(R) 	= ∅); otherwise, it
fails.

Generous coordination always succeeds whenever both P1 and P2 are consis-
tent. On the other hand, when AS(P1)∩AS(P2) = ∅, rigorous coordination fails
as two agents have no common belief sets. Note that generous coordination may
produce a collection of answer sets which contradict with one another. But this
does not cause any problem as a collection of answer sets represents (conflicting)
alternative belief sets of each agent.

As we assume consistent programs, the next result holds by the definition.

Proposition 3.1 When generous/rigorous coordination of two programs suc-
ceeds, the result of coordination is consistent.

Coordination changes the consequences of credulous/skeptical reasoning by
each agent.

Proposition 3.2 Let P1 and P2 be two programs.

1. If Q is a result of generous coordination,
(a) crd(Q) = crd(P1) ∪ crd(P2) ;
(b) skp(Q) = skp(P1) ∩ skp(P2) ;
(c) crd(Q) ⊇ crd(Pi) for i = 1, 2 ;
(d) skp(Q) ⊆ skp(Pi) for i = 1, 2.

2. If R is a result of rigorous coordination,
(a) crd(R) ⊆ crd(P1) ∪ crd(P2) ;
(b) skp(R) ⊇ skp(P1) ∪ skp(P2) if AS(R) 	= ∅ ;
(c) crd(R) ⊆ crd(Pi) for i = 1, 2 ;
(d) skp(R) ⊇ skp(Pi) for i = 1, 2 if AS(R) 	= ∅.

Proof. 1.(a) A literal L is included in an answer set in AS(P1) ∪ AS(P2) iff L
is included in an answer set in AS(P1) or included in an answer set in AS(P2).
(b) L is included in every answer set in AS(P1) ∪ AS(P2) iff L is included in
every answer set in AS(P1) and also included in every answer set in AS(P2).
The results of (c) and (d) hold by (a) and (b), respectively.

2.(a) If L is included in an answer set in AS(P1)∩AS(P2), L is included in an
answer set in AS(Pi) (i = 1, 2). (b) If L is included in every answer set of either
P1 or P2, L is included in every answer set in AS(P1)∩AS(P2) if the intersection
is nonempty. The results of (c) and (d) hold by (a) and (b), respectively. �

Example 3.1. Let AS(P1) = {{a, b, c}, {b, c, d}} and AS(P2) = {{b, c, d}, {c, e}},
where crd(P1) = { a, b, c, d }, skp(P1) = { b, c }, crd(P2) = { b, c, d, e }, and
skp(P2) = { c }. Generous coordination Q of P1 and P2 has the answer sets
AS(Q) = {{a, b, c}, {b, c, d}, {c, e}} where crd(Q) = { a, b, c, d, e } and skp(Q) =
{c}. Rigorous coordination R has the answer sets AS(R) = {{b, c, d}} where
crd(R) = skp(R) = { b, c, d }. The above relations are verified for these sets.

Generous coordination merges credulous consequences of P1 and P2, while
restricts skeptical consequences to those that are common between two pro-
grams. As a result, it increases credulous consequences and decreases skeptical
consequences. This reflects the situation that accepting opinions of the other
agent increases alternative choices while weakening the original argument of
each agent. By contrast, rigorous coordination reduces credulous consequences,
but increases skeptical consequences in general. This reflects the situation that
excluding opinions of the other agent costs abandoning some of one’s alternative
beliefs, which results in strengthening some original argument of each agent.

Definition 3.3. For two programs P1 and P2, let Q be a result of generous
coordination, and R a result of rigorous coordination. When AS(Q) = AS(P1)
(resp. AS(R) = AS(P1)), P1 dominates P2 under generous (resp. rigorous) co-
ordination.

Proposition 3.3 Let P1 and P2 be two programs. When AS(P1) ⊆ AS(P2), P2

dominates P1 under generous coordination, and P1 dominates P2 under rigorous
coordination.

When P2 dominates P1 under generous coordination, we can easily have a
result of generous coordination as Q = P2. Similarly, when P1 dominates P2

under rigorous coordination, a result of rigorous coordination becomes R = P1.
In cases where one agent dominates the other one, or when coordination fails,

the results of coordination are trivial and uninteresting. Then, the problem of
interest is the cases where AS(P1) 	⊆ AS(P2) and AS(P2) 	⊆ AS(P1) for com-
puting generous/rigorous coordination; and AS(P1)∩AS(P2) 	= ∅ for computing
rigorous coordination. In the next section, we present methods for computing
these two coordination.

4 Computing Coordination

4.1 Computing Generous Coordination

We first present a method of computing generous coordination between two
programs.

Definition 4.1. Given two programs P1 and P2,

P1 ⊕ P2 = {head(r1) ; head(r2) ← body∗(r1), body∗(r2) | r1 ∈ P1, r2 ∈ P2 } ,

where head(r1) ; head(r2) is the disjunction of head(r1) and head(r2), body∗(r1) =
body(r1) \ {notL | L ∈ T \ S } and body∗(r2) = body(r2) \ {notL | L ∈ S \ T }
for any S ∈ AS(P1) and T ∈ AS(P2).

The program P1⊕P2 is a collection of rules which are obtained by combining
a rule of P1 and a rule of P2 in every possible way. In body∗(r1) every NAF-literal
notL such that L ∈ T \ S is dropped because the existence of this may prevent
the derivation of some literal in head(r2) after combination.

Example 4.1. Consider two programs:

P1 : p ← not q,

q ← not p,

P2 : ¬p ← not p,

where AS(P1) = {{p}, {q}} and AS(P2) = {{¬p}}. Then, P1 ⊕ P2 becomes

p ; ¬p ← not q,

q ; ¬p ← not p.

Note that not p from the rule of P2 is dropped in the resulting rules because of
the existence of {p} in AS(P1).

By the definition, P1⊕P2 is computed in time |P1|×|P2|×|AS(P1)|×|AS(P2)|,
where |P | represents the number of rules in P and |AS(P)| represents the number
of answer sets in P .

The program P1 ⊕ P2 generally contains useless or redundant literals/rules,
and the following program transformations are helpful to simplify the program.

– (elimination of tautologies: TAUT)
Delete a rule r from a program if head(r) ∩ body+(r) 	= ∅.

– (elimination of contradictions: CONTRA)
Delete a rule r from a program if body+(r) ∩ body−(r) 	= ∅.

– (elimination of non-minimal rules: NONMIN)
Delete a rule r from a program if there is another rule r′ in the program such
that head(r′) ⊆ head(r), body+(r′) ⊆ body+(r) and body−(r′) ⊆ body−(r).

– (merging duplicated literals: DUPL)
A disjunction (L;L) appearing in head(r) is merged into L, and a conjunc-
tion (L,L) or (not L, notL) appearing in body(r) is merged into L or notL,
respectively.

These program transformations all preserve the answer sets of an EDP [3].

Example 4.2. Given two programs:

P1 : p ← q,

r ←,

P2 : p ← not q,

q ← r,

P1 ⊕ P2 becomes

p ; p ← q, not q,

p ; q ← q, r,

p ; r ← not q,

r ; q ← r.

The first rule is deleted by CONTRA, the second rule and the fourth rule are
deleted by TAUT. After such elimination, the resulting program contains the
third rule only.

Now we show that P1 ⊕ P2 realizes generous coordination of P1 and P2.

Lemma 4.1 Let P1 and P2 be two NAF-free AS-combinable programs. Then, S
is an answer set of P1 ⊕ P2 iff S is an answer set of either P1 or P2.

Proof. Suppose that S is an answer set of P1. Then, S satisfies any rule head(r1) ←
body(r1) in P1, thereby satisfies any rule head(r1);head(r2) ← body(r1), body(r2)
in P1 ⊕ P2. (Note: body∗(ri) = body(ri) for NAF-free programs.) To see that S
is an answer set of P1 ⊕ P2, suppose that there is a minimal set T ⊂ S which
satisfies every rule in P1 ⊕ P2. Since S is an answer set of P1, there is a rule r′1
in P1 which is not satisfied by T . For this rule, T 	|= head(r′1) and T |= body(r′1)
hold. Then, for any rule head(r′1);head(r2) ← body(r′1), body(r2) in P1 ⊕ P2,
T |= head(r2) or T 	|= body(r2). Since every rule in P2 is combined with r′1, it
holds that T |= head(r2) or T 	|= body(r2) for every r2 in P2. Then, T satisfies P2.
As P2 is consistent, it has an answer set T ′ ⊆ T . This contradicts the assumption
that P1 and P2 are AS-combinable, i.e., T ′ 	⊂ S. Hence, S is an answer set of
P1 ⊕ P2. The case that S is an answer set of P2 is proved in the same manner.

Conversely, suppose that S is an answer set of P1 ⊕ P2. Then, S satis-
fies any rule head(r1);head(r2) ← body(r1), body(r2) in P1 ⊕ P2. Then S |=
body(r1), body(r2) implies S |= head(r1);head(r2). If S 	|= head(r1) for some rule
r1 ∈ P1, S |= head(r2) for any r2 ∈ P2. Then, S |= body(r2) implies S |= head(r2)
for any r2 ∈ P2, so that S satisfies every rule in P2. Else if S 	|= head(r2) for
some rule r2 ∈ P2, S |= head(r1) for any r1 ∈ P1. Then, S |= body(r1) im-
plies S |= head(r1) for any r1 ∈ P1, so that S satisfies every rule in P1. Else if
S |= head(r1) for every r1 ∈ P1 and S |= head(r2) for every r2 ∈ P2, S satisfies
both P1 and P2. Thus, in every case S satisfies either P1 or P2. Suppose that S
satisfies P1 but it is not an answer set of P1. Then, there is an answer set T of
P1 such that T ⊂ S. By the if-part, T becomes an answer set of P1 ⊕ P2. This
contradicts the assumption that S is an answer set of P1 ⊕P2. Similar argument
is applied when S satisfies P2. �

Theorem 4.2. Let P1 and P2 be two AS-combinable programs. Then, AS(P1 ⊕
P2) = AS(P1) ∪ AS(P2).

Proof. Suppose S ∈ AS(P1). Then, S is an answer set of PS
1 , so that S is an

answer set of PS
1 ⊕PT

2 for any T ∈ AS(P2) (Lemma 4.1). (Note: as P1 and P2 are
AS-combinable, the reducts PS

1 and PT
2 are also AS-combinable.) For any rule

head(r1);head(r2) ← body+(r1), body+(r2) in PS
1 ⊕PT

2 , it holds that body−(r1)∩
S = body−(r2) ∩ T = ∅. On the other hand, for any rule head(r1);head(r2) ←
body∗(r1), body∗(r2) in P1 ⊕ P2, head(r1);head(r2) ← body+(r1), body+(r2) is in
(P1 ⊕ P2)S iff (body−(r1) \ {L | L ∈ T \ S′ }) ∩ S = ∅ and (body−(r2) \ {L |
L ∈ S′ \ T }) ∩ S = ∅ for any S′ ∈ AS(P1) and T ∈ AS(P2). Here it holds that
(body−(r1) \ {L | L ∈ T \ S′ })∩ S ⊆ body−(r1)∩ S and (body−(r2) \ {L | L ∈

S′ \T })∩S ⊆ body−(r2)∩T ∩S ⊆ body−(r2)∩T . Hence, PS
1 ⊕PT

2 ⊆ (P1⊕P2)S .
Suppose any rule head(r1);head(r2) ← body+(r1), body+(r2) in (P1 ⊕ P2)S \
(PS

1 ⊕PT
2). Since S satisfies any rule r1 in P1, S |= body+(r1), body+(r2) implies

S |= head(r1);head(r2). Thus, the answer set S of PS
1 ⊕ PT

2 satisfies every rule
in (P1 ⊕P2)S \ (PS

1 ⊕PT
2). By PS

1 ⊕PT
2 ⊆ (P1 ⊕P2)S , S becomes an answer set

of (P1 ⊕ P2)S and S ∈ AS(P1 ⊕ P2). The case of S ∈ AS(P2) is proved in the
same manner.

Conversely, suppose S ∈ AS(P1 ⊕ P2). Then, S satisfies any rule
head(r1);head(r2) ← body∗(r1), body∗(r2) in P1⊕P2, so S |= body∗(r1), body∗(r2)
implies S |= head(r1);head(r2). If S 	|= head(r1) for some rule r1 ∈ P1, S |=
head(r2) for any r2 ∈ P2. Then, S |= body∗(r2) implies S |= head(r2) for any
r2 ∈ P2, so S |= head(r2) or S 	|= body∗(r2). As S 	|= body∗(r2) implies S 	|=
body(r2), it holds that S |= head(r2) or S 	|= body(r2) for any r2 ∈ P . Hence, S
satisfies every rule in P2. Else if S 	|= head(r2) for some rule r2 ∈ P2, it is shown
in a similar manner that S satisfies every rule in P1. Else if S |= head(r1) for
every r1 ∈ P1 and S |= head(r2) for every r2 ∈ P2, S satisfies both P1 and P2.
Thus, in every case S satisfies either P1 or P2. Suppose that S satisfies P1 but
it is not an answer set of P1. Then, there is an answer set T of P1 such that
T ⊂ S. By the if-part, T becomes an answer set of P1 ⊕ P2. This contradicts
the assumption that S is an answer set of P1 ⊕ P2. Similar argument is applied
when S satisfies P2. �

Example 4.3. In Example 4.1, AS(P1⊕P2) = {{p}, {q}, {¬p}}, thereby AS(P1⊕
P2) = AS(P1) ∪ AS(P2).

4.2 Computing Rigorous Coordination

Next we present a method of computing rigorous coordination between two pro-
grams.

Definition 4.2. Given two programs P1 and P2,

P1 ⊗ P2 =
⋃

S∈AS(P1)∩AS(P2)

R(P1, S) ∪ R(P2, S),

where AS(P1) ∩ AS(P2) 	= ∅ and

R(P, S) = {head(r) ∩ S ← body(r), not (head(r) \ S) | r ∈ P and rS ∈ PS }
and not (head(r) \ S) = {notL | L ∈ head(r) \ S }.

When AS(P1) ∩ AS(P2) = ∅, P1 ⊗ P2 is undefined.3

Intuitively, the program P1⊗P2 is a collection of rules which may be used for
constructing answer sets that are common between P1 and P2. In R(P, S) any
literal in head(r) which does not contribute to the construction of the answer
set S is shifted to the body as NAF-literals. P1 ⊗ P2 may contain redundant
rules, which are eliminated using program transformations given in the previous
subsection.
3 Technically, P1 ⊗ P2 is set as { p ← not p } for any atom p.

Example 4.4. Consider two programs:

P1 : p ← not q, not r,

q ← not p, not r,

r ← not p, not q,

P2 : p ; q ; ¬r ← not r,

where AS(P1) = {{p}, {q}, {r}}, AS(P2) = {{p}, {q}, {¬r}}, and AS(P1) ∩
AS(P2) = {{p}, {q}}. Then, P1 ⊗ P2 becomes

p ← not q, not r,

q ← not p, not r,

p ← not r, not q, not¬r,

q ← not r, not p, not¬r.

Here, the third and the fourth rules can be eliminated by NONMIN.

By the definition, P1 ⊗ P2 is computed in time (|P1| + |P2|) × |AS(P1) ∩
AS(P2)| where |AS(P1) ∩ AS(P2)| represents the number of answer sets in
AS(P1) ∩ AS(P2).

P1 ⊗ P2 realizes rigorous coordination of P1 and P2.

Lemma 4.3 Let P be a program. Then, S is an answer set of P iff S is an
answer set of R(P, S).

Proof. S is an answer set of P iff S is an answer set of PS

iff S is a minimal set such that body+(r) ⊆ S implies head(r) ∩ S 	= ∅ for
every rule head(r) ← body+(r) in PS (∗). By the definition of R(P, S), the rule
head(r) ← body+(r) is in PS iff the corresponding rule head(r)∩ S ← body+(r)
is in R(P, S)S (because body−(r) ∩ S = ∅ and (head(r) \ S) ∩ S = ∅). Hence,
the statement (∗) holds iff S is a minimal set such that body+(r) ⊆ S implies
head(r) ∩ S 	= ∅ for every rule head(r) ∩ S ← body+(r) in R(P, S)S

iff S is a minimal set which satisfies every rule head(r) ∩ S ← body+(r) in
R(P, S)S

iff S is an answer set of R(P, S). �

Theorem 4.4. Let P1 and P2 be two programs. Then, AS(P1⊗P2) = AS(P1)∩
AS(P2).

Proof. Suppose S ∈ AS(P1) ∩ AS(P2). Then, S satisfies any rule head(r) ←
body(r) in P1 and P2, so that S satisfies the corresponding rules head(r) ∩ T ←
body(r), not (head(r) \T) in R(P1, T)∪R(P2, T) for any T ∈ AS(P1)∩AS(P2).
Thus, S satisfies P1 ⊗P2. Suppose that S is not an answer set of P1 ⊗P2. Then,
there is a minimal set U ⊂ S which satisfies every rule in P1 ⊗ P2. In this case,
U satisfies R(P1, S). By Lemma 4.3, however, S is a minimal set which satisfies
R(P1, S). Contradiction. Hence, S is an answer set of P1 ⊗ P2.

Conversely, suppose S ∈ AS(P1⊗P2). Then, S is a minimal set which satisfies
every rule head(r) ∩ T ← body(r), not (head(r) \ T) in R(P1, T) ∪ R(P2, T) for
any T ∈ AS(P1)∩AS(P2). By Lemma 4.3, T is also a minimal set which satisfies
both R(P1, T) and R(P2, T), so that there is a literal L ∈ S \ T and a literal
M ∈ T \ S. However, any rule in R(P1, T)∪R(P2, T) has the head head(r)∩ T ,
so that no literal L ∈ S \ T is included in the head. Thus, L is not included in
the answer set S, thereby S \ T = ∅. As both T and S are minimal, T \ S = ∅.
Hence, T = S and S ∈ AS(P1) ∩ AS(P2). �

Example 4.5. In Example 4.4, AS(P1⊗P2) = {{p}, {q}}, thereby AS(P1⊗P2) =
AS(P1) ∩ AS(P2).

4.3 Algebraic Properties

In this subsection, we provide properties of the operations ⊕ and ⊗.

Proposition 4.5 For programs P1, P2, and P3, the operations ⊕ and ⊗ have
the following properties:

(i) P1 ⊕ P2 = P2 ⊕ P1 and P1 ⊗ P2 = P2 ⊗ P1;
(ii) (P1 ⊕ P2) ⊕ P3 = P1 ⊕ (P2 ⊕ P3) if P1, P2 and P3 are NAF-free;
(iii) (P1 ⊗ P2) ⊗ P3 = P1 ⊗ (P2 ⊗ P3).

Proof. The results of (i) and (ii) are straightforward. To see (iii), AS(P1 ⊗
P2) = AS(P1) ∩ AS(P2) holds by Theorem 4.4. Then, both (P1 ⊗ P2) ⊗ P3

and P1 ⊗ (P2 ⊗ P3) consist of rules in R(P1, S) ∪ R(P2, S) ∪ R(P3, S) for every
S ∈ AS(P1) ∩ AS(P2) ∩ AS(P3). �

The operation ⊕ is not associative in general when programs contain NAF,
but it holds the relation AS((P1 ⊕ P2) ⊕ P3) = AS(P1 ⊕ (P2 ⊕ P3)). ⊕ is also
idempotent, P ⊕P = P if NONMIN and DUPL are applied to P ⊕P and P . ⊗
is not idempotent but the relation AS(P ⊗P) = AS(P) holds. By the definition,
P ⊗ P has the effect of extracting rules used for constructing answer sets of P .

By Proposition 4.5, when rigorous coordination are done among more than
two agents, the order of computing coordination does not affect the result of
final outcome. This is also the case for generous coordination when programs
are NAF-free.

Two types of coordination are mixed among agents. In this case, the absorp-
tion laws and the distribution laws do not hold in general, i.e.,

P1 ⊕ (P1 ⊗ P2) 	= P1 and P1 ⊗ (P1 ⊕ P2) 	= P1;
P1 ⊕ (P2 ⊗ P3) 	= (P1 ⊕ P2) ⊗ (P1 ⊕ P3) and
P1 ⊗ (P2 ⊕ P3) 	= (P1 ⊗ P2) ⊕ (P1 ⊗ P3),

Note that programs are generally different, but the following relations hold by
the definitions:

AS(P1 ⊕ (P1 ⊗ P2)) = AS(P1 ⊗ (P1 ⊕ P2)) = AS(P1),
AS(P1 ⊕ (P2 ⊗ P3)) = AS((P1 ⊕ P2) ⊗ (P1 ⊕ P3)),
AS(P1 ⊗ (P2 ⊕ P3)) = AS((P1 ⊗ P2) ⊕ (P1 ⊗ P3)).

5 Discussion

When a set of answer sets is given, it is not difficult to construct a program
which has exactly those answer sets. Given a set of answer sets {S1, . . . , Sm},
first compute the disjunctive normal form: S1 ∨ · · · ∨ Sm, then convert it into
the conjunctive normal form: R1 ∧ · · · ∧ Rn. The set of facts {R1, . . . , Rn} then
has the answer sets {S1, . . . , Sm}. This technique is also used for computing
coordination between programs. For instance, suppose two programs:

P1 : sweet ← strawberry,

strawberry ←,

P2 : red ← strawberry,

strawberry ←,

where AS(P1) = {{sweet, strawberry}} and AS(P2) = {{red, strawberry}}.
To get generous coordination which has the answer sets AS(P1) ∪ AS(P2),

taking the DNF of each answer set produces

(sweet ∧ strawberry) ∨ (red ∧ strawberry).

Converting it into the CNF, it becomes

(sweet ∨ red) ∧ strawberry.

As a result, the set of facts

Q : sweet ; red ←,

strawberry ←

is a program which is generous coordination of P1 and P2. On the other hand,
the program P1 ⊕ P2 becomes

sweet ; red ← strawberry,

strawberry ←,

after eliminating duplicated literals and redundant rules.
These two programs have the same meaning but have different syntax. Then,

a question is which one is more preferable as a result of coordination? Our answer
is P1 ⊕ P2. The intuition behind this selection is that we would like to include
as much information as possible from the original programs. Comparing Q with
P1 ⊕ P2, information of dependency between sweet (or red) and strawberry is
lost in Q.4 Generally speaking, if there exist different candidates for coordination
between two programs, a program which is syntactically closer to the original
ones is preferred. Then, a question is how to measure such “syntactical closeness”
between programs? One solution we have in mind is, as illustrated above, using
4 Technically, the program Q is obtained by unfolding rules in P1 ⊕ P2 [3, 11].

dependency relations between literals. We prefer a result of coordination which
inherits dependency relations from the original programs as much as possible.

More precisely, suppose the dependency graph of a program P in which each
node represents a ground literal and there is a directed edge from L1 to L2 (we
say L1 depends on L2) iff there is a ground rule in P such that L1 appears in the
head and L2 appears in the body of the rule. Let (L1, L2) be a pair of ground
literals such that L1 depends on L2 in the dependency graph of a program.
Let δ(P) be the collection of such pairs in P . For two programs P1 and P2,
suppose that two different programs P3 and P4 are obtained as candidates for
coordination. Then, we say that P3 is preferable to P4 if

Δ(δ(P3), δ(P1) ∪ δ(P2)) ⊂ Δ(δ(P4), δ(P1) ∪ δ(P2)),

where Δ(S, T) represents the symmetric difference between two sets S and T , i.e.,
(S\T) ∪ (T \S). Applying to the above example, δ(P1) = {(sweet, strawberry)},
δ(P2) = {(red, strawberry)}, δ(Q) = ∅, and δ(P1⊕P2) = {(sweet, strawberry),
(red, strawberry)}. Then, Δ(δ(P1⊕P2), δ(P1)∪δ(P2)) ⊂ Δ(δ(Q), δ(P1)∪δ(P2)),
so we conclude that P1 ⊕ P2 is preferable to Q. Further elaboration would be
considered to reflect syntactical closeness, but we do not pursue this issue further
here.

Coordination supposes that different programs have equal standings and com-
bines those programs while maximally keeping original information from them.
The problem of combining logical theories has been studied by several researchers
in different contexts. Baral et al. [1] introduce algorithms for combining logic pro-
grams by enforcing satisfaction of integrity constraints. For instance, suppose two
programs:

P1 : p(x) ← not q(x),
q(b) ← r(b),
q(a) ←,

P2 : r(a) ←,

together with the integrity constraints:

IC : ← p(a), r(a),
← q(a), r(a).

They combine P1 and P2 and produce a new program which satisfies IC as
follows:

P3 : p(x) ← not q(x), x 	= a,

q(b) ← r(b),
q(a) ∨ r(a) ← .

By contrast, (P1 ∪ IC) ⊕ P2 in our framework becomes5

p(x) ; r(a) ← not q(x),
5 Here IC is included in P1 as we handle integrity constraints as a part of a program.

q(b) ; r(a) ← r(b),
q(a) ; r(a) ←,

after eliminating tautologies. Comparing two results, the program P3 has two
answer sets {p(b), q(a)} and {p(b), r(a)}; by contrast, (P1 ∪ IC) ⊕ P2 has two
answer sets: {p(b), q(a)} and {r(a)}. Thus, the answer sets of P3 do not coincide
with those of the original programs. Indeed, they request that every answer set
of a resulting program to be a subset of an answer set of P1 ∪ P2. This is in
contrast to our approach where we request the result of coordination to keep
(part of) the answer sets of the original programs. Another important difference
is that algorithms in [1] are not applicable to unstratified logic programs, while
our method is applied to every extended disjunctive program.

The problem of program composition has been studied by several researchers
(e.g., [4, 6, 12]). It combines different programs into one. The problem is then
how to provide the meaning of a program in terms of those components. Brogi
et al. [4] introduce three meta-level operations for composing normal logic pro-
grams: union, intersection, and restriction. The union simply puts two programs
together, and the intersection combines two programs by merging pair of rules
with unifiable heads. For instance, given two programs:

P1 : likes(x, y) ← not bitter(y),
hates(x, y) ← sour(y);

P2 : likes(Bob, y) ← sour(y),

the program P1 ∩ P2 consists of the single rule:

likes(Bob, y) ← not bitter(y), sour(y).

The restriction allows one to filter out some rules from a program. They em-
ploy Fitting’s 3-valued fixpoint semantics and show how one can compute the
semantics of the composed program in terms of the original programs. In the
context of normal open logic programs, Verbaeten et al. [12] introduce a variant
of the well-founded semantics, and identify conditions for two programs P1 and
P2 to satisfy the equality Mod(P1∪P2) = Mod(P1)∩Mod(P2) where Mod(P) is
the set of models of P . Etalle and Teusink [6] consider three-valued completion
semantics for program composition as the union of normal open programs. Com-
paring these three studies with ours, both program operations and underlying
semantics are different from ours. Moreover, the goal of program composition is
to compute the meaning of the whole program in terms of its subprograms; on
the other hand, our goal is to construct a program whose answer sets are the
union/intersection of the original programs.

Combination of propositional theories has been studied under the names of
merging [8] or arbitration [9]. The goal of these research is to provide a new
theory which is consistent and preserves as much information as possible from
their sources. Merging is different from coordination presented in this paper.
For instance, two theories P1 = { p ←} and P2 = { q ←} are merged into

P3 = { p ← , q ←}. By contrast, generous coordination of P1 and P2 becomes
P1 ⊕ P2 = { p ; q ←}. Thus, in contrast to generous coordination, merging does
not preserve answer sets of the original programs. In merging different beliefs by
different agents are mixed together as far as they are consistent, which makes it
difficult to distinguish the original beliefs of one agent after merging. This implies
the problem that original beliefs of one agent are hard to recover when one of
the information sources turns out incorrect. For instance, suppose an agent has
the program P4 = { p ; q ←} and new information P1 = { p ←} arrives. If P4

and P1 are merged, the result becomes P5 = { p ←}. Later, it turns out that the
fact p in P1 does not hold. At this stage, the agent cannot recover the original
program P4 from P5. By contrast, if generous coordination is done, it becomes
P4 ⊕ P1 = P4 and the original information P4 is kept.

Ciampolini et al. [5] introduce a language for coordinating logic-based agents.
They handle two types of coordination: collaboration and competition. Their
goal is to solve these different types of queries using abduction, and not to con-
struct a program as a result of coordination. Recently, Meyer et al. [10] introduce
a logical framework for negotiating agents. They introduce two different modes
of negotiation: concession and adaptation. They characterize such negotiation
by rational postulates and provide methods for constructing outcomes. Those
postulates are not generally applied to nonmonotonic theories, and in this sense
coordination considered in this paper is beside the subject of those postulates.

Coordination introduced in this paper is naive in the sense that it just takes
the union/intersection of different collections of answer sets. We can develop
variants of coordination by introducing strategies that depend on situations.
For instance, when there are more than two agents, it is considered to take
the majority into account as in [8]. Given collections of answer sets by three
agents, {S1, S2, S3 }, {S2, S4 }, and {S1, S5 }, such majority principle allows us
to build {S1, S2 } as a result of coordination, whose member is supported by
more than one agent. Priorities between agents are also considerable. In the
above example, if the second agent is most reliable, we can have a choice to take
S4 into account. We can also consider finer grains of compositions such as having
S1 ∪ S2 or S1 ∩ S2 as a result of coordination from two answer sets S1 and S2

(where S1 ∪S2 is assumed consistent). Detailed studies on such variants are left
to further research.

6 Concluding Remarks

This paper has studied coordination between logical agents. Given multiple
agents as logic programs, two different types of coordination have been intro-
duced and their computational methods have been provided. We have verified
that the proposed methods realize generous/rigorous coordination between logic
programs. Our coordination framework provides a compositional semantics of
multiple agents and serves as a declarative basis for accommodation in multi-
agent systems. From the viewpoint of answer set programming, the process of
computing coordination is considered as a program development under a specifi-

cation that requests a program reflecting the meanings of two or more programs.
This relates to the issue of program composition under the answer set seman-
tics. This paper considered the answer set semantics but a similar framework
would be developed under different semantics (though computational methods
are likely to be different).

There is still room for improvement in computing generous/rigorous coordi-
nation. The operations ⊕ and ⊗ introduced in this paper require computation
of answer sets of original programs, but it is much better if coordination can be
constructed by purely syntactic manipulation without computing those answer
sets. Further, the operation ⊕ produces a disjunctive program even when the
original programs are non-disjunctive programs. The resulting disjunctive pro-
gram is reduced to a non-disjunctive one if it is head-cycle-free, but this is not
the case in general. At the moment, we do not have solutions for these problems.
In future work, we will refine our framework and also investigate other types
of coordination and collaboration as well as their characterization in terms of
computational logic.

References

1. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE
Transactions of Knowledge and Data Engineering 3(2):208–220, 1991.

2. C. Baral and M. Gelfond. Logic programming and knowledge representation.
Journal of Logic Programming 19/20:73–148, 1994.

3. S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by
partial evaluation. Journal of Logic Programming 32(3):207–228, 1997.

4. A. Brogi, S. Contiero, and F. Turini. Composing general logic programs. Proc. 4th
International Conference on Logic Programming and Nonmonotonic Reasoning,
Lecture Notes in Artificial Intelligence 1265, pp. 273–288, Springer, 1997.

5. A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Cooperation and
competition in ALIAS: a logic framework for agents that negotiate. Annals of
Mathematics and Artificial Intelligence 37(1/2), pp. 65–91, 2003.

6. S. Etalle and F. Teusink. A compositional semantics for normal open programs.
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pp. 468–482, MIT Press, 1996.

7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4):365–385, 1991.

8. S. Konieczny and R. Pino-Pérez. On the logic of merging. Proceedings of the 6th
International Conference on Principles of Knowledge Representation and Reason-
ing, pp. 488–498, Morgan Kaufmann, 1998.

9. P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases).
IEEE Transactions on Knowledge and Data Engineering 10(1):76–90, 1998.

10. T. Meyer, N. Foo, R. Kwok, and D. Zhang. Logical foundation of negotiation:
outcome, concession and adaptation. Proceedings of the 19th National Conference
on Artificial Intelligence, pp. 293–298, MIT Press, 2004.

11. C. Sakama and H. Seki. Partial deduction in disjunctive logic programming.
Journal of Logic Programming 32(3):229–245, 1997.

12. S. Verbaeten, M. Denecker, and D. De. Schreye. Compositionality of normal
open logic programs. Proceedings of the 1997 International Symposium on Logic
Programming, pp. 371–385, MIT Press, 1997.

