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Abstract—Predicting air ticket demand is crucial for both
airline companies and travel agencies, while the task is generally
hard due to its dynamic nature and few attempts have been
made to apply machine learning techniques for this purpose.
This paper provides an empirical study for predicting airline
tickets sales using deep neural networks. A new learning model is
introduced by extending the Long Short-Term Memory (LSTM)
for handling non-time series data as well as time series data. The
proposed model is compared with the SARIMAX model that is
used for forecasting time series data with seasonal patterns. We
perform experiments using real data and show that the proposed
model captures demand changes better than the SARIMAX. In
particular, features related to the day of the week and different
airlines are well predicted.

Index Terms—airline tickets, time series prediction, deep
neural network, long short-term memory, time series model

I. INTRODUCTION

Nowadays airline tickets are mostly booked on the Internet
and ticket sales change every moment. Airline companies use
dynamic pricing to maximize their profits. The price for the
same service class on the same flight may rise or fall within
several days. Recent big data analysis enables airlines offering
personalized prices to customers [9]. On the demand side,
customers become more price sensitive as time to departure
nears and the number of active customers increases closer
to departure [6]. Air ticket demands are also of particular
interest for travel agencies. They purchase tickets from airline
companies and sell to customers, then it is crucial for agencies
to predict market demand from the viewpoint of financial
management. In addition to dynamic change in the booking
status, however, the types of airline tickets sold by travel
agencies are diverse, which makes it difficult to predict the
sales of airline tickets. Moreover, ticket sales data are business
sensitive and most airlines do not reveal their data. There is
lack of publicly available datasets that could enable researchers
to conduct prediction effectively. As a result, most studies use
small datasets that are available on the Web [3].

Recent development of machine learning techniques, espe-
cially deep neural networks, enables to automatically discover
patterns in data and make predictions. Several researchers
have applied artificial neural network techniques (ANN) for
predicting air ticket or air travel demand. Huang [8] introduces
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a model that combines ANN and the genetic algorithm for
predicting air ticket sales revenue of travel agencies. They use
a back propagation architecture of ANN. Mostafaeipour et al.
[4] use a three-layered ANN for predicting air travel demand
in airports. They use evolutionary meta-heuristic algorithms
to improve ANN and show that it increases adaptation rate
between prediction and real data. Those two studies use
simple neural networks with a single hidden layer. Yuan
et al. [14] develop a model for predicting air ticket demand
to increase revenue of an online travel agent. The model
estimates the effect of customer calls as internal factors and
customers’ search engine query history as external factors. It
then compares historical weekly ticket price data fluctuations
with those factors. The model consists of ANN and two types
of support regressions. Pan et al. [11] use the long short-term
memory (LSTM) model that is a type of recurrent deep neural
networks. It then forecasts daily airline demand using two time
series data: a horizontal time series for short-term forecasting,
and a vertical time series for long-term forecasting. It is shown
that the model achieves the best prediction accuracy compared
with other classification techniques. The dataset used in its
evaluation is restricted to one route by one airline.

In this study, we use deep neural networks to predict air
ticket demand based on the past ticket sales. We introduce a
new learning model called LSTMX that extends the LSTM by
introducing exogenous variables for non-time series data. We
evaluate on real data provided by a travel agency to predict
air ticket demands of several flights by different airlines. We
then compare the results with those predicted using a time
series model SARIMAX [2]. Our experimental results show
that the LSTMX well captures demand changes in contrast
to the SARIMAX. The LSTMX also distinguishes trends of
different airlines on the same route. The rest of this paper is
organized as follows. Section 2 addresses description of data
used in this study. Section 3 introduces a learning model and
a method of learning. Section 4 presents experimental results
and analyses. Section 5 summarizes the paper.

II. DATA DESCRIPTION

In this study we use real data provided by a travel agency.
The data present reservations of international flights arriving
and departing the major airports of Japan. The number of



TABLE I: Data attributes

Attributes Value Data type
outbound/inbound 0 or 1 non-time series
airline company airline code non-time series
departure date Y/M/D non-time series
departure time 0:00–23:59 non-time series
booking class A–Z non-time series
remaining seats integer from 0 to 9 time series
day of the week integer from 0 to 6 non-time series
holiday 0 or 1 non-time series

flights is approximately 800 per day and the data contain the
reservation status of each flight for the next 6 months on each
day.1 Among them, we use data of four air routes: Tokyo-
Paris, Osaka-Taipei, Osaka-Helsinki, and Nagoya-Honolulu,
where each route has different airlines. Departure day is
from 10/6/2018 to 30/9/2019 (approximately 16 months).
The data contain several attributes for each flight such as
outbound/inbound flight distinction, airline company, flight
number, aircraft type, departure airport, arrival airport, de-
parture date, departure time, arrival date, and booking class.
Among those attributes, we use outbound/inbound flight dis-
tinction (0 or 1), airline company, departure date, departure
time, and booking class. Booking classes are given to tickets
by each airline and are represented by the letters A to Z.
Generally, international flights have seat classes such as first
class, business class, and economy class. The same seat class
is further classified into different booking classes, depending
on time of reservation, availability of changes after reservation,
mileage accrual rate, etc. The number of remaining seats in
each booking class is represented by an integer from 0 to 9. By
the specification of data, 9 is used if the number of remaining
seats is 10 or more.

In addition to these attributes, we add indices that represent
the day of the week and the holiday flag of the departure date
for each flight. The day of the week is specified by integers,
e.g., Mon:=0, Tue:=1, . . . Sun:=6. The holiday flag is set
to 1 for departure on weekends, national holidays, and busy
seasons such as summer vacation or the year-end and New
Year holidays. Otherwise, it is set to 0. Table I summarizes
attributes/values of dataset used in this study. Among those
attributes, remaining seats are time series data (i.e., a series
of data points indexed in time order) and others are non-time
series data.

III. LEARNING MODEL

A. LSTMX

We apply a deep neural network to predict the sales of
airline tickets. Since the fluctuation of the remaining number
of tickets is expressed as time series data, we use the Long
Short-Term Memory (LSTM) that is suitable for learning time
series data. On the other hand, we also handle non-time series
data as presented in Section II. Input of the LSTM is assumed
to be time series data that are meaningful in its order, then the

1For each day, the data contain approximately 140 thousands of tuples in
the csv format (22MB).
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Fig. 1: LSTM for non-time series data

prediction accuracy will be decreased if non-time series data
whose order are not meaningful are given as input. To cope
with the problem, we first extend an LSTM model to handle
non-time series data as well as time series data (Fig. 1).2

In this model, time series data, the current input xt and the
recurrent input yt−1, are put into the block input, the input
gate, the output gate, and the forget gate in the same way as
the conventional LSTM. By contrast, non-time series data xN

are represented as exogenous variables and are not fed into the
block input. ct−1 denotes the activation of the memory cell at
time step t−1 and circles containing × represent an element-
wise multiplication between its inputs. As a result, non-time
series data are not stored in the memory cell and are handled
separately from time series data.

We use this extended type of LSTM to build a learning
model for the current purpose. The architecture of our learning
model (called LSTMX) is illustrated in Fig. 2. Data are
processed in this learning model as follows.

1) Time series data and non-time series data are processed
separately in the LSTM block as in Fig. 1. The number
of LSTM cells is 128. Data are processed with a batch
size of 64 and an epoch of 100 training steps.

2) Time series input is also fed into the autoregressive
component that consists of two affine layers. The first
layer is supposed to detect linear features in each series
and the second layer is supposed to reflect those features.
The first layer has 32 output units and the second has
one output unit.

3) The output of the LSTM is input to the Dropout layer in
order to prevent overfitting to training data. The dropout
rate is set as 0.2. After the Dropout layer, data are
combined into 32 output units in the first affine layer,
then again combined into one output unit in the second
affine layer.

4) The output of the LSTMX is obtained by combining
the outputs of the LSTM part and the autoregressive
component. In each layer the ReLU function is used for
activation. We use the Adam optimization method with
the learning rate of 0.01.

2A similar model is introduced in [7].
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Fig. 2: LSTMX

The idea of introducing the autoregressive component apart
from the neural network is introduced in the LSTNet [10]. It
successfully captures both short-term and long-term patterns
in time series data.

B. SARIMAX

The SARIMAX [2] is one of the most popular techniques
currently used to forecast a time series. The SARIMAX
extends the ARIMA model [5] by introducing seasonality and
exogenous variables as

yt = c+

p∑
i=1

ϕiyt−i +

q∑
i=1

θiϵt−i + βT
t xt + ϵt

where xt is an exogenous input vector at time t and βT
t its

coefficient, yt is time series data, ϵt is the noise at t, c is a
constant, and ϕi and θi are coefficients for AR (autoregressive)
and MA (moving average) models, respectively.

The SARIMA model is represented by
SARIMA(p, d, q)(P,D,Q)[s] where (p, d, q) (resp. (P,D,Q))
represents non-seasonal (resp. seasonal) part of the model.
p and P are the order of AR processes, q and Q are the
order of MA processes, and d and D are the degree of
differencing (number of times it is differenced). s represents
a season’s cycle. In this study we assume the seasonality
as the weekly cycle. So we use the SARIMAX model
with SARIMA(p, 1, q)(0, 0, 0)[s] where s = 7 when there
is a weekly cycle; otherwise, set s = 0. We assume that
data have an unstable seasonal pattern over time, and set
P = D = Q = 0. The parameter p and q are selected in the
range of 0 ≤ p, q ≤ 4 to make the AIC (Akaike’s Information
Criterion) parameter minimal. Here, the AIC parameter is
defined as: “AIC = −2 lnL + 2k” where L is the maximal
value of the likelihood function of the model and k is the
number of parameters. We set d = 1 to have the difference
yt − yt−1.

C. Learning Method

The dataset presented in Section II is preprocessed to feed
into a neural network as follows.

• Time series data are classified based on flight destinations
and booking classes. An input has one time series data
that contain the number of remaining tickets for each
booking class on 14 days before the departure date. Some

TABLE II: Air routes, airlines, flight and booking classes

Air routes airlines flights Business Economy
Tokyo – Paris 3 8 40 40
Osaka – Taipei 3 20 78 100

Nagoya – Honolulu 2 4 20 12
Osaka – Helsinki 1 2 10 10

flights are not scheduled every day. If there is no flight
on a day, the number of remaining seats is set to −1.

• Airlines, the month of departure date, departure time,
the day of the week, and types of booking classes
are distinguished by dummy variables that assign 1 to
applicable parts. For instance, if there are three airlines
A, B, C and data represent a flight by A then the airline
information is represented by 100.

• Different airlines have different booking classes. To com-
pare prediction results among different airlines, booking
classes are ordered by the price in each airline.

• Input data are represented by vectors. Time series data
are represented by (number of dataset, window size,
number of remaining tickets), and non-time series data
are represented by (number of dataset, outbound/inbound,
airline company, departure month, departure time, day of
the week, booking class, holiday).

As stated above we predict the number of remaining tickets
on 14 days before the departure date. This is because we
mainly focus on demand for leisure travel and customers are
more likely to purchase tickets for this purpose more than 14
days before departure. As addressed in Section II, we use data
from 10/6/2018 to 30/9/2019. Sequences of data for 14, 28,
56 or 84 days in this period are set as window sizes and fed
into the LSTM. The number of remaining tickets of departure
on the next day after a sequence is used as training data. This
window size assumes fluctuations in the number of remaining
tickets for the last two weeks, one month, two months, and
three months before departure. If the number of remaining
ticket is −1 in training data, it is removed. The same time
series data is used for the SARIMAX model, while a model
is generated for each booking class. It has variables for the
month of departure date, departure time, the day of the week
of departure date, and the holidays.

We construct a model for each air route. Table II shows air
routes, the number of airlines, the number of flights, and the
number of booking classes that are considered in this study. In
each route, a half of the flights are inbound and the other half
are outbound. We use every booking class in business class.
For economy class, on the other hand, 3 to 5 booking classes
are selected from each flight that have different characteristics
of fluctuation. In Table II, Business and Economy represent
the number of booking classes in business class and economy
class, respectively.

We predict the number of remaining tickets for each booking
class during the period from 1/10/2019 to 31/12/2019 (92
days). The prediction is done as follows.

1) Using the latest time series data yt−1, . . . , yt−p with



 
  Fig. 3: Prediction Method

the length p of a window size and non-time series data
xt, predict the number ŷt of remaining tickets for each
flight.

2) Incorporating the predicted value ŷt at Step 1 into the
time series input, predict the number ŷt+1 of remaining
tickets for each flight on the next day as Step 1.

3) Repeat Steps 1–2 for days during the period.

The process of prediction is illustrated in Fig. 3. For
instance, if we want to predict the number of remaining tickets
14 days before the departure on May 31, then set (in case of
p = 14):

xt : non-time series data of the flight on May 31;
ŷt : the number of remaining tickets on May 17 for the

flight departing on May 31;
yt−1 : the number of remaining tickets on May 16 for the

flight departing on May 30;
yt−2 : the number of remaining tickets on May 15 for the

flight departing on May 30;
. . .

yt−14 : the number of remaining tickets on May 3 for the
flight departing on May 30.

The predicted value ŷ is a real number then set: ŷ = 9 if
ŷ ≥ 9; otherwise, ŷ is rounded to the nearest integer. If there
is no flight on a day, the predicted value is set to ŷ = −1.

We use the RMSE (Root Mean Squared Error) as a loss
function to evaluate the prediction accuracy:

RMSE =

√√√√ 1

N

N∑
n=1

(yn − ŷn)2

where N is the number of days to be predicted, yn is the actual
value on a day, and ŷn is the predicted value on the same day.
If there is no flight on a day, the day is not counted in N . Since
we predict values in 92 days, set N = 92. We perform learning
10 times and take the average values of RMSE. The value of
RMSE represents the average of the difference between the
real value and the predicted value of the number of remaining
tickets. So smaller RMSE reflects greater accuracy.

IV. EXPERIMENTAL RESULTS

In this experiment, we apply two prediction models, the
LSTMX and the SARIMAX, to each flight in Table II. The
number of data used in this experiment is shown in Table III.
For instance, for flights in Tokyo–Paris 17,160 is the total
number of time series data with the window size of 14 for 40
booking classes in business class. We use the Tensorflow/Keras
library of Python for implementing the LSTMX and the
Statsmodels for the SARIMAX.3 All experiments are done
using Google Colaboratory.

A. Comparison of RMSE

We calculate the average values of RMSE by changing the
window size for different classes of each flight. For instance,
Table IV provides RMSE values for each booking class of
different flights in Tokyo–Paris. In the table, “size” means a
window size. Table V shows the number of booking classes
classified by the range of RMSE for all flights in Table III. In
the table, ≤ 3, ≤ 4, and ≤ 5 mean that the range of an RMSE
value x is x ≤ 3, 3 < x ≤ 4, and 4 < x ≤ 5, respectively. By
Table V, the following facts are observed.
• In business class, the LSTMX and the SARIMA make

prediction within RMSE≤ 3 in almost the same number
of booking classes. On the other hand, the LSTMX makes
prediction within RMSE≤ 4 or RMSE≤ 5 in more
booking classes than the SARIMAX.

• In economy class, the LSTMX makes prediction within
RMSE≤ 3, RMSE≤ 4 and RMSE≤ 5 in more booking
classes than the SARIMAX.

• Each model makes more precise prediction in business
class than in economy class by comparing values in
RMSE≤ 3. We use every booking class in business class
while select some in economy class, which would result
in more precise prediction in business class.

• There is no big difference in the results of prediction by
changing the window size. This indicates that there are
no distinctive features in the size of windows considered
here. A longer-term fluctuation could be found by making
the window size larger, while it takes much time for
learning.

One learning model is considered better than the other if
the model predicts the number of remaining tickets with lower
RMSE in more booking classes. The RMSE of the LSTMX
becomes lower when there are less fluctuation. This would be

3https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sa-
rimax.SARIMAX.html



TABLE III: The number of data

Business class Economy class
Window size 14 28 56 84 14 28 56 84
Tokyo – Paris 17,160 16,640 15,600 14,560 17,160 16,640 15,600 14,560
Osaka – Taipei 28,358 27,406 25,574 23,670 42,490 41,090 38,410 35,610

Nagoya – Honolulu 8,200 7,920 7,360 6,840 4,920 4,572 4,416 4,104
Osaka – Helsinki 4,480 4,340 4,060 3,780 4,480 4,340 4,060 3,780

explained by that the LSTMX has the autoregressive layer that
extracts linear features in time series data. Even if the aver-
age RMSE is small, however, there could be a considerable
difference between the real value and the predicted value in a
particular time or periods. We then provide detailed analyses
on the results of different flights in the following.

B. Comparison between LSTMX and SARIMAX

We compare the LSTMX and the SARIMAX in different
flights. Fig. 4 shows prediction results for different booking
classes of two flights. In each case, it is observed that the
LSTMX takes wide ranged values, while the SARIMAX takes
narrow ranged values. Two reasons are considered for the dif-
ference. First, the LSTMX can predict short-term fluctuations
using time series data, while learning features of the day of the
week with extrinsic variables. Second, a time-series model like
SARIMAX tends to converge to the average of the time-series
values of input data when a long-term prediction is made. As
a result, the LSTMX makes “brave” prediction and captures
dynamics better than the SARIMAX.

Generally, time series models require data to be stationary.
If data is not stationary, it must be converted into a (weak) sta-
tionary series by differencing or logarithmic transformations.
Moreover, even if data is stationary, the optimum parameters
differ for each time series. In this study, we difference data and
decide optimal parameters by restricting the range of p and
q of SARIMA(p, d, q)(P,D,Q)[s] using the autocorrelation
coefficient and the partial autocorrelation coefficient. It will
take much time to seek optimal parameters outside those
ranges. In contrast, there is no need to make data stationary in
the LSTMX and the same model can be used for flights having
different features. As such, the LSTMX can easily handle input
data than the SARIMAX.

C. Prediction results

The LSTMX has extrinsic variables for handling non-time
series data. As a result, the LSTMX often captures weekly
fluctuations or features in different months. Fig. 5 shows two
prediction results in a week. In DL611 no seat is available
for departure on Tuesday and Friday, while there are some
on other days. In AY78, on the other hand, five or more
seats are available from Tuesday to Friday. The LSTMX well
captures these dynamics. Fig. 6 shows two prediction results in
October-December. AF279 has large amplitude in October and
November, while CI173 has one in December. The LSTMX
successfully predicts these dynamics. These results show that
the month of departure data and the day of the week are
effective in predicting fluctuation. By contrast, we observe

no specific feature depending on departure time. The effect
of holiday flags is also limited in our experiments. This is
probably because there are not so many holidays (except
Saturday and Sunday) in data that are enough to affect the
results of prediction.

When the value of RMSE is small, we observe that the
LSTMX often predicts timing of changes even if the number
of remaining tickets does not match. For instance, in NH215
it does not well predict the number of tickets in October and
November, while some coincidences are observed for timing
of increase/decrease. A similar observation is done in AF279
(Fig. 7).

Different airlines on the same route often have different
dynamics. Fig. 8 shows the results of business class of two
airlines on the same route in the same period. As observed
in the figure, fluctuations in two flights are quite different—
there is large amplitude in October–November while small
amplitude in December in AF272. In NH215, on the other
hand, there is relatively smaller fluctuation in November while
some big fluctuation in December. The LSTMX captures these
different characteristics due to the existence of an extrinsic
variable representing airlines.

There are cases where the prediction fails significantly
(Fig. 9). One reason for this is that the same flight has different
fluctuation in the same period (Fig. 10). In such cases, it is
hard to predict dynamics of change using two years’ data. To
predict fluctuation more accurately, longer-term training data
of several years would be needed.

V. CONCLUSION

In this study, we attempt to predict the number of remaining
airline tickets in different booking classes. We use real data of
15 months as training data and compare prediction results of
3 months using two different learning models. Experimental
results show that the LSTMX has smaller RMSE than the
SARIMAX in general, and also captures dynamics in short
periods better than the SARIMAX. The LSTMX also suc-
cessfully predicts weekly/monthly changes and distinguishes
different airlines on the same route. Experimental results also
suggest that the prediction accuracy depends on flights and
booking classes. We used data from 2018 to 2019 but could not
use data of 2020 due to the COVID-19 pandemic. To improve
the prediction accuracy, it is necessary to increase the amount
of data over several years.

In [12] the authors argue whether newly developed deep
neural network based algorithms are superior to traditional al-
gorithms for forecasting time series data. They then show that
an LSTM based algorithm improved the prediction by 85%



TABLE IV: RMSE for each booking class of different flights in Tokyo–Paris (bold letters show the lowest values)

AF279 Business class Economy class
model size C D J I Z O W S Y B

14 3.33 3.62 3.24 3.85 4.19 2.79 3.78 3.76 1.53 1.61
LSTMX 28 3.30 3.48 3.21 3.79 3.97 3.04 3.80 3.83 1.49 1.51

56 3.30 3.49 3.21 3.75 4.06 2.88 3.77 3.73 1.48 1.54
84 3.38 3.59 3.24 3.83 4.16 3.07 3.94 3.95 1.46 1.51

SARIMAX – 4.40 4.77 4.84 3.29 4.36 3.30 5.32 5.28 3.48 4.50
JL45 Business class Economy class

model size C D J X I Y B H K M
14 4.50 4.51 4.50 3.64 3.50 4.26 4.27 4.27 4.30 4.20

LSTMX 28 4.36 4.44 4.32 3.70 3.26 4.30 4.26 4.27 4.29 4.32
56 4.31 4.33 4.30 3.52 3.33 4.41 4.48 4.52 4.47 4.48
84 4.47 4.57 4.38 3.72 3.43 4.37 4.43 4.37 4.48 4.49

SARIMAX – 4.99 4.44 5.02 3.36 3.25 5.49 6.37 5.77 6.06 5.35
NH215 Business class Economy class

model size C D J P Z Y E N B M
14 4.26 4.26 3.19 3.02 3.32 1.85 3.59 2.74 2.67 2.70

LSTMX 28 4.22 4.43 3.35 3.14 3.51 1.87 3.62 2.84 2.79 2.81
56 4.13 4.29 3.29 3.10 3.50 1.79 3.58 2.86 2.75 2.86
84 4.20 4.26 3.30 3.36 3.66 1.85 3.64 2.71 2.77 2.82

SARIMAX – 5.60 5.33 2.46 4.25 3.76 6.94 5.39 3.01 6.78 6.72

TABLE V: The number of booking classes classified by the range of RMSE

Business class Economy class
model size ≤ 3 ≤ 4 ≤ 5 ≤ 3 ≤ 4 ≤ 5

14 38 46 38 24 32 42
LSTMX 28 37 51 34 22 35 44

56 38 48 38 24 34 42
84 37 48 41 22 33 45

SARIMAX – 38 30 26 18 30 39

on average compared to the ARIMA model using financial
data. The current study provides yet another verification that
an LSTM based algorithm works well against the SARIMAX
under some circumstances.

The proposed model has a room for further extension.
Several studies extend LSTM by taking into account the
seasonality, for instance, building a specialized LSTM model
for each season [1] or combining LSTM and SARIMA [13].
The LSTMX could be extended by incorporating those tech-
niques. The proposed model has potential applications for
predicting tickets sales for sports events, hotel reservations,
train tickets, etc. In case of sports events, match or start time
is handled as extrinsic variables. In case of hotel reservations,
location or events are used variables to distinguish features.
Moreover, it could be applied for managing stock products.
These extensions and applications are left for future study.
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Fig. 4: Prediction Results (upper: JL814 Osaka-Taipei, Business Class; booking class=C. lower: AF272 Tokyo-Paris, Economy
Class; booking class=B)
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Fig. 5: Mean values of prediction by the day of the week (DL611: Nagoya-Honolulu, Business; AY78: Osaka-Helsinki,
Economy)
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Fig. 6: Different fluctuations of months (AF279: Tokyo-Paris, Business; CI173: Osaka-Taipei, Economy)
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Fig. 7: Match on Timing of Changes (NH215: Tokyo-Paris, Business; AF 279: Tokyo-Paris, Economy) 
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Fig. 8: Fluctuations on the same route by different airlines (AF 272/NH215: Tokyo-Paris, Business)
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Fig. 9: Failure of Prediction (BR130: Osaka-Taipei, Economy; AY78: Osaka-Taipei, Business)
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Fig. 10: Different fluctuations in the same period (BR130 and AY78) left: from 1/10/2018 to 31/12/2018; right: from 1/10/2019
to 31/12/2019)


