
Fundamenta Informaticae XXI (2001) 1–15 1

DOI 10.3233/FI-2012-0000

IOS Press

Representing Argumentation Frameworks in
Answer Set Programming

Chiaki Sakama
Department of Computer and Communication Sciences

Wakayama University, Japan

sakama@sys.wakayama-u.ac.jp

Tjitze Rienstra
Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg

tjitze@gmail.com

Abstract. This paper studies representation of argumentation frameworks (AFs) in answer set pro-
gramming (ASP). Four different transformations from AFs to logic programs are provided under the
complete semantics, stable semantics, grounded semantics and preferred semantics. The proposed
transformations encode labelling-based argumentation semantics at the object level, and different
semantics of AFs are uniformly characterized by stable models of transformed programs. We show
how transformed programs can be used for solving AF problems such as query-answering, enforce-
ment of arguments, and agreement of different AFs. The results exploit new connection between AF
and logic programming, and enables one to realize AF on top of existing answer set solvers.

Keywords: argumentation framework, answer set programming, transformation.

1. Introduction

Logic programming (LP) and argumentation framework (AF) are two different languages for represent-
ing knowledge, while close connections in their semantics have been revealed by several researchers
[18]. Dung [5] introduces a transformation from LP to AF and shows that stable models (resp. the well-
founded model) of a logic program correspond to stable extensions (resp. the grounded extension) of a

Address for correspondence: Chiaki Sakama, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan

2 C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP

transformed argumentation framework. The results are later enhanced by connections between 3-valued
stable models of LP and complete extensions of AF [20], and regular models of LP and preferred ex-
tensions of AF [4]. On the other side, Dung [5] introduces a converse transformation from AF to LP,
and shows that stable extensions (resp. the grounded extension) of an argumentation framework are com-
puted as stable models (resp. the well-founded model) of a transformed logic program. The results are
also extended to relating preferred, complete, or other extensions of AF to their corresponding semantics
of transformed logic programs [8, 9, 15, 20, 19].

In his transformation from AF to LP, Dung uses LP as a meta-interpreter for computing arguments.
The idea is inherited by studies [8, 9, 19] which use answer set programming (ASP) [10, 11, 13] as a
meta-interpreter for processing AF given as input. An important difference is that Dung characterizes
different semantics of AF in terms of different semantics of LP, while those studies [8, 9, 19] characterize
different semantics of AF in terms of the answer set semantics of LP. Such characterization is important
in the sense that it enables one to use existing ASP solvers for computing different semantics of AF. On
the other hand, encoding AF semantics in meta-interpretative LP results in quite complicated programs,
especially for problems under preferred semantics that are located at the second level of the polynomial
hierarchy, and the resulting program are hardly accessible for non-experts in ASP [8].

In this paper, we introduce transformations from AF to LP such that different semantics of AF (i.e.,
complete, stable, grounded, preferred) are characterized by the answer set semantics of LP in a simple
and uniform manner. Different from [8, 9, 19], we do not take the meta-interpretative approach, but
translate an argumentation framework into a logic program at the object level. This viewpoint is similar
to a translation given in [4, 20] where arguments and attack relations are encoded by rules of logic
programs. The translation given in [4, 20], however, maps different semantics of AF into different
semantics of LP, so that it does not realize computing different semantics of AF in terms of ASP. Among
the meta-interpretative ASP approaches, [8, 9] compute extension-based semantics of AF, while [19]
computes labelling-based semantics of AF. It is known that there is a one-to-one correspondence between
extension-based semantics and labelling-based semantics of AF [3]. Unlike extension-based semantics
which computes accepted arguments, labelling-based semantics not only computes accepted arguments
but distinguishes rejected arguments from undecided arguments. In this paper, we compute labelling-
based semantics of AF in terms of ASP.

We introduce transformations that are used for computing different semantics of AF in terms of ASP,
and we show that transformed programs can be used for solving several AF problems on top of ASP.
The rest of this paper is organized as follows. In Section 2 we review basic notions of argumentation
frameworks and answer set programming. Section 3 introduces transformations from AF to LP which
translate complete semantics, stable semantics, grounded semantics and preferred semantics into answer
sets of transformed logic programs. Section 4 uses transformed programs for realizing query-answering,
enforcement, and agreement in AF. Section 5 discusses related issues and Section 6 summarizes the
paper.

2. Preliminaries

2.1. Argumentation Framework

This section reviews formal argumentation frameworks which are in [3, 5].

C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP 3

Definition 2.1. (argumentation framework)
Let U be the universe of all possible arguments. An argumentation framework (AF) is a pair (Ar, att)
where Ar is a finite subset of U and att ⊆ Ar×Ar. An argument a attacks an argument b iff (a, b) ∈ att.
For x ∈ Ar, define x− = { y | (y, x) ∈ att }.

An argumentation framework (Ar, att) is represented by a directed graph in which vertices are ar-
guments in Ar and directed arcs from a to b exist whenever (a, b) ∈ att.

Definition 2.2. (labelling)
A labelling of AF = (Ar, att) is a (total) function L : Ar → { in, out, und }.

When L(a) = in (resp. L(a) = out or L(a) = und) for a ∈ Ar, an argument a is accepted (resp.
rejected or undecided) in L (written as in(a) (resp. out(a) or und(a))). We call in(a), out(a) and
und(a) labelled arguments. A set S of labelled arguments for AF under L is defined as S = { �(x) |
L(x) = � for x ∈ Ar } where � is either in, out or und.

Definition 2.3. (complete labelling)
A labelling L of AF = (Ar, att) is a complete labelling if for each argument a ∈ Ar, it holds that:

• L(a) = in iff L(b) = out for every b ∈ Ar such that (b, a) ∈ att.

• L(a) = out iff L(b) = in for some b ∈ Ar such that (b, a) ∈ att.

By definition it follows that an argument is undecided under complete labelling if and only if none
of its attackers is in, and at least one of its attackers is undecided.

Definition 2.4. (stable, grounded, preferred labelling)
Let L be a complete labelling of AF = (Ar, att). For x ∈ Ar, put in(L) = {x | L(x) = in },
out(L) = {x | L(x) = out } and und(L) = {x | L(x) = und }.
• L is a stable labelling iff und(L) = ∅.
• L is a grounded labelling iff in(L) is minimal wrt set inclusion among all complete labellings of

AF .

• L is a preferred labelling iff in(L) is maximal wrt set inclusion among all complete labellings of
AF .

The grounded or preferred labelling is also characterized using out and und as follows [3].

• L is a grounded labelling iff out(L) is minimal wrt set inclusion among all complete labellings of
AF iff und(L) is maximal wrt set inclusion among all complete labellings of AF .

• L is a preferred labelling iff out(L) is maximal wrt set inclusion among all complete labellings of
AF .1

There is a one-to-one correspondence between the set in(L) with a complete (resp. stable, grounded,
preferred) labelling L of AF and a complete (resp. stable, grounded, preferred) extension of AF [3].
1A preferred labelling L does not imply the minimality of und(L), while it is implied by a semi-stable labelling [3].

4 C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP

2.2. Answer Set Programming

A logic program (LP) considered in this paper is a finite set of rules of the form:

a1 ∨ · · · ∨ al ← al+1 , . . . , am, not am+1 , . . . , not an (n ≥ m ≥ l ≥ 0) (1)

where each ai is a ground atom. not is negation as failure (NAF) and not a is called an NAF-literal.
The left-hand side of the rule is the head, and the right-hand side is the body. For each rule r of the
above form, head(r), body+(r), and body−(r) denote the sets of atoms {a1, . . . , al}, {al+1, . . . , am},
and {am+1, . . . , an}, respectively. A rule r is a constraint if head(r) = ∅; and r is a (disjunctive) fact if
body+(r) = body−(r) = ∅. We often write a rule with variables as a shorthand of its ground instances.
A logic program is simply called a program. A program P is called a normal program if |head(r) | ≤ 1
for every rule r in P . A program P is called a positive program if body−(r) = ∅ for every rule r in P .
A positive program P is called a definite program if |head(r) |= 1 for every rule r in P .

The semantics of a program is defined by the stable model semantics (or answer set semantics)
[10, 11]. Let B be the Herbrand base of a program. An interpretation I ⊆ B satisfies a rule r of the
form (1) if body+(r) ⊆ I and body−(r) ∩ I = ∅ imply head(r) ∩ I �= ∅. In particular, I satisfies
a constraint r such that head(r) = ∅ if body+(r) \ I �= ∅ or body−(r) ∩ I �= ∅. An interpretation
satisfying every rule in a program is a model of the program. Given a positive program P , a model M of
P is minimal if there is no model N of P such that N ⊂M . Given a program P , an interpretation I is a
stable model of P if it coincides with a minimal model of the positive program (called a reduct of P wrt
I): P I = { a1∨· · ·∨al ← al+1, . . . , am | (a1∨· · ·∨al ← al+1 , . . . , am, not am+1 , . . . , not an) ∈
P and {am+1, . . . , an}∩I = ∅ }. Stable models coincide with minimal models in a positive program. A
program may have no, one, or multiple stable models in general. A program is consistent if it has at least
one stable model; otherwise, the program is inconsistent. Representing knowledge by logic programs
under the stable model semantics is called stable model programming [13], or more popularly, answer
set programming (ASP). In this paper, we use the terms logic programming and answer set programming
interchangeably.

3. Transforming AF to LP

Given an argumentation framework AF = (Ar, att), the set B of labelled arguments is constructed as

B = { in(x), out(x), und(x) | x ∈ Ar }.

We view Ar as a set of constants and consider B as the Herbrand base on which a logic program is
constructed. We first introduce a set of rules which will be used in what follows.

Definition 3.1. (rules for AF)
Given AF = (Ar, att), the set ΓAF of rules is defined as follows:

ΓAF = { in(x)← out(y1), . . . , out(yk) | x ∈ Ar and x− = { y1, . . . , yk} (k ≥ 0) } (2)

∪ { out(x)← in(y) | (y, x) ∈ att } (3)

∪ {← in(x), not out(y) | (y, x) ∈ att } (4)

∪ {← out(x), not in(y1), . . . ,not in(yk) | x ∈ Ar and x− = { y1, . . . , yk} (k ≥ 0) }.(5)

C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP 5

The rule (2) states that an argument x is labelled in if every attacker y1, . . . , yk of x is labelled out.
The rule (3) states that an argument x is labelled out if there is an attacker y which is labelled in. The
constraint (4) states that every in-labelled argument x has no attacker y which is not labelled out. The
constraint (5) states that every out-labelled argument x has at least one attacker yi (1 ≤ i ≤ k) which is
labelled in. (4) and (5) represent the admissibility condition of [3]. Note that when an argument x has
no attacker (x− = ∅), the rule (2) becomes the fact in(x)←, which states that the argument x, which has
no attackers, is always labelled in. Also when x− = ∅, the rule (5) becomes the constraint← out(x),
which states that the argument x, which has no attackers, cannot be labelled out.

3.1. Complete Semantics

We first consider representing the complete semantics of AF by ASP.

Definition 3.2. (AF program under the complete semantics)
Given AF = (Ar, att), an AF-program under the complete semantics ΠC

AF is defined as follows:

ΠC
AF = ΓAF ∪ { in(x) ∨ out(x) ∨ und(x)← | x ∈ Ar } (6)

∪ {← in(x), out(x), ← in(x), und(x), ← out(x), und(x) | x ∈ Ar }. (7)

The rules of ΓAF represent the necessary and sufficient condition of in or out labellings under
the complete labelling of Definition 2.3. In addition, the disjunctive fact (6) states that every argument
is labelled by either in, out or und, and the constraints (7) state that each argument cannot take two
different labellings.2 The transformed program encodes the complete labelling of AF.

Theorem 3.1. Let AF = (Ar, att) be an argumentation framework and ΠC
AF an associated AF-program

under the complete semantics. Then the sets of labelled arguments under the complete semantics of AF
coincide with the stable models of ΠC

AF .

Proof:
The result follows from the definition of complete labelling and the rules of ΠC

AF . ��

Example 3.1. Suppose AF = ({a, b, c}, {(a, b), (b, a), (b, c)}). Then ΠC
AF consists of the rules:

in(a)← out(b), in(b)← out(a), in(c)← out(b),

out(a)← in(b), out(b)← in(a), out(c)← in(b),

← in(a), not out(b), ← in(b), not out(a), ← in(c), not out(b),

← out(a), not in(b), ← out(b), not in(a), ← out(c), not in(b),

in(x) ∨ out(x) ∨ und(x)← where x ∈ {a, b, c},
← in(x), out(x), ← in(x), und(x), ← out(x), und(x) where x ∈ {a, b, c}.

��

�

• •

•

a b

c

ΠC
AF has three stable models:

{ in(a), out(b), in(c) }, { out(a), in(b), out(c) }, { und(a), und(b), und(c) }
which are equivalent to three sets of labelled arguments under the complete semantics of AF .
2The program ΠC

AF is also represented by a normal program. We will argue the issue in Section 5.1.

6 C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP

3.2. Stable Semantics

We next consider representing the stable semantics of AF by ASP.

Definition 3.3. (AF program under the stable semantics)
Given AF = (Ar, att), an AF-program under the stable semantics ΠS

AF is defined as follows.

ΠS
AF = ΓAF ∪ { in(x) ∨ out(x)← | x ∈ Ar } (8)

∪ {← in(x), out(x) | x ∈ Ar }. (9)

In contrast to ΠC
AF , the program ΠS

AF introduces disjunctive facts (8) and constraints (9). This is
because every argument in stable labelling is either in or out (but not both).

Theorem 3.2. Let AF = (Ar, att) be an argumentation framework and ΠS
AF an associated AF-program

under the stable semantics. Then the sets of labelled arguments under the stable semantics of AF coin-
cide with the stable models of ΠS

AF .

Proof:
A stable labelling is a complete labelling L such that und(L) = ∅. Then the result follows by Theo-
rem 3.1. ��

Corollary 3.3. AF = (Ar, att) has no stable labelling iff ΠS
AF is inconsistent.

Example 3.2. Suppose AF1 = ({a, b}, {(a, b), (b, a)}). Then ΠS
AF1

consists of rules:

in(a)← out(b), in(b)← out(a), out(a)← in(b),

out(b)← in(a), ← in(a), not out(b), ← in(b), not out(a),

← out(a), not in(b), ← out(b), not in(a),

in(a) ∨ out(a)←, in(b) ∨ out(b)←,

← in(a), out(a), ← in(b), out(b).

��• •a b

ΠS
AF1

has two stable models { in(a), out(b) } and { out(a), in(b) } which are equivalent to two sets of
labelled arguments under the stable semantics.

Next suppose AF2 = ({a, b, c}, {(a, b), (b, c), (c, a)}). Then ΠS
AF2

consists of rules:

in(a)← out(c), in(b)← out(a), in(c)← out(b),

out(a)← in(c), out(b)← in(a), out(c)← in(b),

← in(a), not out(c), ← in(b), not out(a), ← in(c), not out(b),

← out(a), not in(c), ← out(b), not in(a), ← out(c), not in(b),

in(a) ∨ out(a)←, in(b) ∨ out(b)←, in(c) ∨ out(c)←,

← in(a), out(a), ← in(b), out(b), ← in(c), out(c).

�
������������• •

•

a b

c

ΠS
AF2

is inconsistent (having no stable model) and AF2 has no stable labelling.

C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP 7

3.3. Grounded Semantics

To represent the grounded semantics of AF, we define the next program.

Definition 3.4. (AF program under the grounded semantics)
Given AF = (Ar, att), an AF-program under the grounded semantics ΠG

AF is defined as follows.

ΠG
AF = ΓAF ∪ { und(x)← not in(x), not out(x) | x ∈ Ar }. (10)

Unlike ΠC
AF or ΠS

AF , ΠG
AF does not have disjunctive facts. Instead, it has a rule (10) which states

that an argument x is labelled und if neither in(x) nor out(x) is derived in ΓAF .

Theorem 3.4. Let AF = (Ar, att) be an argumentation framework and ΠG
AF an associated AF-program

under the grounded semantics. Then the set of labelled arguments under the grounded semantics of AF
coincides with the stable model of ΠG

AF .

Proof:
Let M be the set of labelled arguments under the grounded semantics of AF . Since M is also a set
of labelled arguments under a complete labelling of AF , M is a stable model of ΠC

AF (Theorem 3.1)
thereby satisfies every rule in ΓAF . Then ΓM

AF (a reduct of ΓAF wrt M) is a definite program and
M \ { und(x) | x ∈ Ar} is the unique stable model of ΓAF . Since und(x) ∈ M iff in(x) �∈ M and
out(x) �∈ M for any x ∈ Ar, M becomes the unique stable model of ΠG

AF . The converse is shown in a
similar way. ��

Example 3.3. Suppose AF = ({a, b, c, d}, {(a, b), (b, a), (b, c), (d, c)}). Then ΠG
AF consists of rules:

in(a)← out(b), in(b)← out(a), in(c)← out(b), out(d), in(d)←,

out(a)← in(b), out(b)← in(a), out(c)← in(b),

out(c)← in(d), ← in(a), not out(b), ← in(b), not out(a),

← in(c), not out(b), ← in(c), not out(d), ← out(a), not in(b),

← out(b), not in(a), ← out(c), not in(b), not in(d), ← out(d),

und(x)← not in(x), not out(x) (where x ∈ {a, b, c, d}).

�� �

	
		

• • •
•

a b c

d

ΠG
AF has the unique stable model { und(a), und(b), out(c), in(d) } which is equivalent to the set of

labelled arguments under the grounded semantics of AF .

3.4. Preferred Semantics

To represent preferred semantics of AF, we extend the Herbrand base as follows. Given an argumentation
framework AF = (Ar, att), let

B′ = { in(x), out(x), IN(x), OUT(x), UND(x) | x ∈ Ar }.

In this section, we construct a logic program over B′.

8 C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP

Definition 3.5. (AF program under the preferred semantics)
Given AF = (Ar, att), an AF-program under the preferred semantics ΠP

AF is defined as follows.

ΠP
AF = ΓAF ∪ { in(x) ∨ out(x)← | x ∈ Ar }

∪ { IN(x)← in(x), not out(x) | x ∈ Ar } (11)

∪ { OUT(x)← not in(x), out(x) | x ∈ Ar } (12)

∪ { UND(x)← in(x), out(x) | x ∈ Ar }. (13)

In contrast to ΠS
AF , constraints ← in(x), out(x) are not included in ΠP

AF . The rule (11) (called
IN-rule) means that an argument x has an IN-labelling under the preferred semantics if it is labelled
in under the stable labelling; while the rule (12) (called OUT-rule) means that an argument x has an
OUT-labelling under the preferred semantics if it is labelled out under the stable labelling. On the other
hand, the rule (13) (called UND-rule) means that an argument x has an UND-labelling under the preferred
semantics if it does not have a consistent stable labelling (i.e., in and out are assigned at the same time).
ΠP

AF introduces these IN-OUT-UND rules to ΠS
AF instead of constraints (9) of Definition 3.3.

Theorem 3.5. Let AF = (Ar, att) be an argumentation framework and ΠP
AF an associated AF-program

under the preferred semantics. Then there is a one-to-one correspondence between the sets of labelled
arguments under the preferred labelling of AF and the stable models of ΠP

AF .

Proof:
Suppose that L is a preferred labelling of AF . Then L is either a stable labelling or not. (i) If L is a stable
labelling, the set of labelled arguments under the stable labelling L of AF coincide with stable models of
ΠS

AF (Theorem 3.2). Those stable models of ΠS
AF do not simultaneously contain both in(x) and out(x)

for any x ∈ Ar. Then replacing the constraint← in(x), out(x) of ΠS
AF with rules (11) and (12), there

is a one-to-one correspondence between stable models of ΠS
AF and stable models of ΠP

AF \ {(13)}. That
is, M is a stable model of ΠS

AF iff N = M ∪ {IN(x) | in(x) ∈ M} ∪ {OUT(x) | out(x) ∈ M} is
a stable model of ΠP

AF \ {(13)}. Hence, the result holds. (ii) Else if L is not a stable labelling, there
is some argument x ∈ Ar which cannot be labelled by one of in and out in a way that satisfies the
condition of Definition 2.3. In this case, assuming L(x) = in leads to L(x) = out and vice versa,
thereby becomes L(x) = und. The situation is represented by the UND-rule (13) which produces
UND(x) for such arguments. Consequently, L(x) = in (resp. L(x) = out or L(x) = und) under a
preferred labelling L iff there is a stable model M of ΠP

AF such that IN(x) ∈ M (resp. OUT(x) ∈ M or
UND(x) ∈M). ��
Corollary 3.6. AF = (Ar, att) has a stable labelling iff ΠP

AF has a stable model M such that UND(x) �∈
M for any x ∈ Ar.

Example 3.4. Suppose AF = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}). Then ΠP
AF consists of rules:

in(a)← out(b), in(b)← out(a), in(c)← out(b), out(c),

out(a)← in(b), out(b)← in(a), out(c)← in(b), out(c)← in(c),

← in(a), not out(b), ← in(b), not out(a), ← in(c), not out(b), ← in(c), not out(c),

← out(a), not in(b), ← out(b), not in(a), ← out(c), not in(b), not in(c),

in(a) ∨ out(a)←, in(b) ∨ out(b)←, in(c) ∨ out(c)←,

C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP 9

IN(x)← in(x), not out(x) (where x ∈ {a, b, c}),
OUT(x)← not in(x), out(x) (where x ∈ {a, b, c}),
UND(x)← in(x), out(x) (where x ∈ {a, b, c}).

ΠP
AF1

has two stable models:

{ out(a), in(b), out(c), OUT(a), IN(b), OUT(c) },
{ in(a), out(b), in(c), out(c), IN(a), OUT(b), UND(c) }.

��

��

��
��

• •

•

a b

c

Then two sets { OUT(a), IN(b), OUT(c) } and { IN(a), OUT(b), UND(c) } correspond to two sets of la-
belled arguments under the preferred semantics (of which the first one also corresponds to the stable
semantics).

4. Applications

In Section 3 we provide encodings of different argumentation semantics using stable models. This en-
ables us to use ASP techniques for solving various problems in AF. In this section, we provide some
applications of AF programs under the complete semantics. The methods are directly applicable to AF
programs under the stable, grounded or preferred semantics.

4.1. Query Answering

To see whether an argument x is acceptable in some extension of an AF, one can use a dispute tree in
which an argument x is put in the root of the tree and every branch from the root to leafs is a dispute [14].
Using an AF program under the complete semantics, the question whether an argument x is accepted or
not in a complete extension of AF is checked as follows.

Theorem 4.1. Let AF = (Ar, att) be an argumentation framework and ΠC
AF an associated AF-program

under the complete semantics. For any argument x ∈ Ar,

1. x is labelled in in some complete labelling of AF iff ΠC
AF ∪{← not in(x) } has a stable model.

2. x is labelled in in every complete labelling of AF iff ΠC
AF ∪ {← in(x) } has no stable model.

The results also hold by replacing in with out or und.

Theorem 4.1 uses a standard query-answering technique of ASP. In this way, we can use existing
ASP solvers such as [12, 17] for checking credulous or skeptical entailment of an argument in AF.

4.2. Enforcement

The enforcement problem is to check whether it is possible to modify a given AF in such a way that a
desired set of arguments becomes a subset of an extension by adding new arguments which may interact
with old ones [2]. To encode the problem, we introduce the universal argumentation framework. The
universal argumentation framework (UAF) is an argumentation framework (U, attU) in which U is the

10 C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP

set of all arguments in the language and attU ⊆ U × U is the set of fixed attack relations over U . With
this setting, an argumentation framework is defined as a pair AF = (Ar, att) where Ar is a finite subset
of U and att = attU ∩ (Ar × Ar) [16]. We say that AF is a sub-AF of the UAF . For the set U of all
arguments, the set of all labelled arguments is defined as BU = { in(x), out(x), und(x) | x ∈ U }.
The enforcement problem is defined as follows.

Definition 4.1. (enforcement)
Let AF = (Ar, att) be a sub-AF of UAF = (U, attU). Given an enforcement set E ⊂ BU , if one can
construct a new argumentation framework AF ′ such that (i) AF ′ = (Ar′, att′) where Ar ⊆ Ar′ ⊆ U
and att′ = attU ∩ (Ar′ × Ar′), and (ii) AF ′ has a complete labelling L such that L(x) = � for any
�(x) ∈ E, then AF satisfies the enforcement E under the complete semantics.

We introduce an AF program for the enforcement problem.

Definition 4.2. (AF program for enforcement)
Let AF = (Ar, att) be a sub-AF of UAF = (U, attU). Then an AF-program for enforcement under the
complete semantics εΠC

AF is defined as

εΠC
AF = ΠC

UAF \ { in(x)←, ← out(x) | x ∈ U \Ar }. (14)

By definition, εΠC
AF is obtained from ΠC

UAF by removing every fact in(x) ← and every constraint
← out(x) for x ∈ U \Ar. These facts and constraints appear if an argument x ∈ U \Ar has no attacker
(by (2) and (5)). The program ΠC

UAF represents arguments and attack relations over UAF = (U, attU),
while AF does not necessarily require all arguments in U \Ar and attack relations attU \att to satisfy a
given enforcement. Hence, the fact in(x)← and the constraint← out(x) for x ∈ U \ Ar are removed
as they may not be used. Using the program, the enforcement problem is computed in ASP as follows.

Theorem 4.2. Let AF = (Ar, att) be an argumentation framework and εΠC
AF a program defined as

above. Given an enforcement set E ⊂ BU , AF satisfies the enforcement E under the complete semantics
iff the program εΠC

AF ∪ {← not �(x) | �(x) ∈ E where � ∈ {in, out, und} } has a stable model.

The result of Theorem 4.2 is analogous to the result of Theorem 4.1. The difference is that to make
�(x) true, any argument that is not in Ar but in U \Ar is introduced with an appropriate labelling.

Example 4.1. Let UAF = ({a, b, c, d}, {(d, c), (c, b), (b, a)}) and AF = ({a, b}, {(b, a)}). Then AF
has the complete labelling { out(a), in(b) }. The program εΠC

AF consists of rules:

in(a)← out(b), in(b)← out(c), in(c)← out(d),

out(a)← in(b), out(b)← in(c), out(c)← in(d),

← in(a), not out(b), ← in(b), not out(c), ← in(c), not out(d),

← out(a), not in(b), ← out(b), not in(c), ← out(c), not in(d),

in(x) ∨ out(x) ∨ und(x)← (where x ∈ {a, b, c, d}),
← in(x), out(x), ← in(x), und(x), ← out(x), und(x) (where x ∈ {a, b, c, d}).

� � �• • • •
a b c d

�
�

�
	

AF

Given the enforcement set E = {in(a)}, the program εΠC
AF ∪{← not in(a) } has the stable model

{ in(a), out(b), in(c), out(d) }. Then AF satisfies the enforcement E. That is, to enforce in(a),

C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP 11

AF is modified by introducing the new argument c and the attack relation (c, b). On the other hand,
let AF ′ = ({a, b, d}, {(b, a)}). Then the fact in(d) ← and the constraint ← out(d) is in εΠC

AF ′ and
εΠC

AF ′ ∪ {← not in(a) } has no stable model. In this case, AF does not satisfy the enforcement E
because there is no way to make in(a) true by introducing a new argument to AF ′. In fact, introducing
c to AF ′ makes it identical to UAF that has the complete labelling { out(a), in(b), out(c), in(d) }.

4.3. Agreement

Argumentation frameworks are used in negotiation [1] and debate [16]. In negotiation and debate, two
agents having different opinions exchange their arguments to reach an agreement. In this section, we
represent two agents as different AFs and formulate agreement between them.

Definition 4.3. (agreement)
Let AF1 = (Ar1, att1) and AF2 = (Ar2, att2) be two sub-AFs of UAF = (U, attU). If AF1 has a set
S of labelled arguments under a complete labelling and AF2 has a set T of labelled arguments under a
complete labelling such that S ∩ T �= ∅, then AF1 and AF2 can reach an agreement under the complete
semantics. In this case, we say that AF1 and AF2 agree on S ∩ T .

By definition, two AFs can reach an agreement if they have complete labellings that agree on labellings
of some arguments.

Example 4.2. Suppose AF1 = ({a, b, c}, {(a, b), (b, a), (b, c)}), AF2 = ({a, b, d}, {(a, b), (b, a), (d, a)})
and UAF = ({a, b, c, d}, {(a, b), (b, a), (b, c), (d, a)}).
Then AF1 has the sets of labelled arguments under complete
labelling: { in(a), out(b), in(c) }, { out(a), in(b), out(c) },
{ und(a), und(b), und(c) }; while AF2 has the set of labelled
arguments under complete labelling: { out(a), in(b), in(d) }.
Then AF1 and AF2 agree on { out(a), in(b) }.

��

�
�
• •

••

a b

cd

In negotiation or debate, agents are interested in whether they can agree on some particular argu-
ments. Let γΠC

AF be a program in which predicates in, out and und in ΠC
AF are renamed by in′, out′

and und′, respectively. Define

Φ = { agree(x)← in(x), in′(x) | x ∈ U } ∪ { agree(x)← out(x), out′(x) | x ∈ U }
∪ { agree(x)← und(x), und′(x) | x ∈ U } ∪ { ok← agree(x) | x ∈ U } ∪ {← not ok }

where ok and agree(x) are new atoms. Then we have the next result.

Theorem 4.3. Let AF1 and AF2 be two sub-AFs of the UAF, and ΠC
AF1

and ΠC
AF2

their associated AF-
programs under the complete semantics, respectively. Then AF1 and AF2 can reach an agreement under
the complete semantics iff the program ΠC

AF1
∪ γΠC

AF2
∪ Φ has an answer set S. In this case, AF1 and

AF2 agree on each argument x such that agree(x) ∈ S.

Theorem 4.3 can be extended to agreement among more than two agents.

12 C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP

5. Discussion

5.1. Reduction to Normal Programs

In Section 3 we introduce four different transformations from AF to LP. Of which, ΠC
AF (AF program

under the complete semantics), ΠS
AF (AF program under the stable semantics), and ΠP

AF (AF program
under the preferred semantics) are programs that contain both disjunction and NAF-literals. By contrast,
ΠG

AF (AF program under the grounded semantics) is a normal program that contains NAF-literals but no
disjunction. The program ΠC

AF is transformed to a semantically equivalent normal program by replacing
the disjunctive fact (6) and three constraints (7) with three rules:

in(x)← not out(x), not und(x),

out(x)← not in(x), not und(x),

und(x)← not in(x), not out(x).

Likewise, the program ΠS
AF is transformed to a semantically equivalent normal program by replacing

the disjunctive fact (8) and the constraint (9) with two rules:

in(x)← not out(x) and out(x)← not in(x).

Thus, ΠC
AF , ΠS

AF and ΠG
AF can be represented by normal programs. On the other hand, the program ΠP

AF

cannot be transformed to a semantically equivalent normal program in polynomial time. This is because
in ΠP

AF two atoms in(x) and out(x) may hold at the same time. In this case, UND(x) holds by definition.
Then the above mentioned replacement in ΠS

AF is not applied to ΠP
AF . Thus, ΠP

AF is in the class of logic
programs which are more expressive and computationally expensive than others unless the polynomial
hierarchy collapses. This is consistent with the complexity results of argumentation frameworks [6, 7],
namely that deciding whether an argument is in every extension of an AF is coNP-complete for the
stable semantics, while it is ΠP

2 -complete for the preferred semantics.

5.2. Related Work

Connections between argumentation frameworks and logic programming have been investigated by sev-
eral researchers. Dung [5] provides a transformation from a logic program to an argumentation frame-
work. He shows that logic programming semantics are characterized by extension based argumentation
semantics in different ways. He also represents an argumentation framework in a logic program. Given
an argumentation framework AF = (Ar, att), Dung defines the logic program PAF = AGU ∪ APU
where AGU = { attack(x, y)←| (x, y) ∈ att } and APU = { defeat(x)← attack(y, x), acc(y),
acc(x) ← not defeat(x) } where acc(x) stands for “an argument x is acceptable” and defeat(x)
for “an argument x is defeated”. For each extension E of AF , put m(E) = AGU ∪ { acc(x) |
x ∈ E} ∪ { defeat(y) | y is attacked by some x ∈ E }. He then shows the following results: (i) E is
a stable extension of AF iff m(E) is a stable model of PAF ; (ii) E is a grounded extension of AF iff
m(E)∪{not defeat(a) | a ∈ E } is the well-founded model of PAF ; (iii) The well-founded model and
Fitting’s model of PAF coincide. Our representation of AF in logic programs is different from Dung’s
encoding in three ways. First, Dung captures a logic program as a meta-interpreter for argumentation
systems. That is, an AF is given as input to a logic program, then the program produces a stable model

C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP 13

or the well-founded model that characterizes a stable extension or a grounded extension of AF. This is
different from our encoding in which arguments and their attack relations are represented as object-level
rules in a program. Secondly, in Dung’s encoding different semantics of AF correspond to different se-
mantics of a logic program. By contrast, in our encoding, different semantics of AF are all characterized
by stable models of a transformed program. Thirdly, Dung encodes extension-based semantics of AF,
while we encode labelling-based semantics of AF. In labelling-based semantics, rejected arguments and
undecided arguments are distinguished by two labellings out and und, while extension-based semantics
does not distinguish them.

Egly et al. [9] introduce ASP encodings for AF. Their encoding is in line with Dung’s meta-interpretative
approach. Given AF = (Ar, att), they define the program:

πs = { arg(a) | a ∈ Ar } ∪ { defeat(a, b) | (a, b) ∈ att }
∪ { in(x)← not out(x), arg(x), out(x)← not in(x), arg(x),

← in(x), in(y), defeat(x, y)}
∪ { defeated(x)← in(y), defeat(y, x), ← out(x),not defeated(x) }.

Then they show that there is a one-to-one correspondence between stable extensions of AF and stable
models of πs. They provide similar encodings of complete extensions, grounded extensions, and pre-
ferred extensions. Different from Dung’s encodings, Egly et al. characterize different semantics of AF in
terms of stable models of a program. In the meta-interpretative approach, an instance of AF is given as an
input to a single meta-logic program under a particular argumentation semantics. On the other hand, an
ASP encodings becomes complicated for semantics such as the preferred semantics. The complication
comes from the fact that a program has to encode tests for checking subset-maximality of admissible
sets. To ease the problem, Dvořák et al. [8] use a built-in function for computing subset minimization.

Wakaki et al. [19] also introduce a meta-interpretative computation of AF semantics in ASP. They
represent different labelling-based semantics of AF (complete, stable, grounded, preferred and semi-
stable) by answer sets of a transformed program. For instance, complete labellings of AF = (Ar, att) is
computed by answer sets of the following program:

πc = { arg(a) | a ∈ Ar } ∪ { att(a, b) | (a, b) ∈ att }
∪ { in(x)← arg(x),notng(x), ng(x)← in(y), att(y, x),

ng(x)← undec(y), att(y, x), out(x)← in(y), att(y, x),

undec(x)← arg(x),not in(x),not out(x) }.

Stable labellings are computed by introducing the constraint ← undec(x) to πc. These transforma-
tions are similar to our ΠC

AF and ΠS
AF . To compute grounded/preferred labellings of AF, on the other

hand, they first compute answer sets of πc, i.e. computing every complete labelling as candidates,
then they check whether those candidates satisfy the condition of minimal/maximal in labellings for
grounded/preferred semantics. To this end, they introduce a meta-logic program to which answer sets of
πc are given as an input. As such, their transformation is not done in polynomial time for grounded and
preferred semantics.

Nieves et al. [15] provide an encoding of preferred extensions of AF into a logic program. Using
the atom d(x) meaning “an argument x is defeated”, they characterize the preferred semantics of AF

14 C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP

in terms of stable models of positive (disjunctive) program. Given AF = (Ar, att), they define its
associated program as ΓAF =

⋃
a∈Ar Γ(a) where

Γ(a) = {
⋃

b:(b,a)∈att
{d(a) ∨ d(b)}} ∪ {

⋃

b:(b,a)∈att
{d(a)←

∧

c:(c,b)∈att
d(c)}}.

Informally speaking, the first part says that an argument a is defeated when any one of its adversaries
is not defeated (i.e., d(a) ∨ d(b) is read as d(a) ← ¬d(b)). The second part says that an argument a
is defeated when all the arguments that defend a are defeated. Then they show that there is a one-to-
one correspondence between preferred extensions of AF and stable models of ΓAF . Different from our
transformation, Γ(a) considers not only attackers but also defenders (i.e., the argument c defends a in
the second part). Nieves et al.’s transformation is simple in the sense that it uses only one predicate d.
On the other hand, they only provide encodings of preferred extensions and it is unclear whether similar
encodings are possible for other semantics.

Wu et al. [20] introduce a translation from AF to logic programs. Given AF = (Ar, att), its associ-
ated logic program is defined as

PAF = { a← not b1, . . . ,not bn | a ∈ Ar and a− = {b1, . . . , bn} (n ≥ 0) }.
It is shown that there is a one-to-one correspondence between complete labellings of AF and 3-valued
stable models of PAF [20]. The result is later extended to the correspondences between stable (resp.
grounded, preferred, semi-stable) labellings of AF and stable (resp. well-founded, regular, L-stable)
models of PAF [4]. Wu et al.’s result is similar to ours in the sense that they map arguments and at-
tack relations into rules of a logic program at the object level. On the other hand, they relate different
semantics of AF to different semantics of logic programs. By contrast, we characterize different seman-
tics of AF by a single semantics—2-valued stable model semantics of logic programs. We do not study
encoding semi-stable labelling in this paper.

6. Conclusion

We introduced methods of representing argumentation frameworks in terms of logic programs. The pro-
posed transformations are simple and encode different AF semantics by stable models of LP in a uniform
manner. This enables one to use existing answer set solvers for computing argumentation semantics and
solving various problems of AF. Moreover, several techniques developed in LP are directly applied to
transformed AF-programs. For instance, the equivalence issue of AFs is converted to the equivalence
issue of the transformed AF programs, optimization (or partial evaluation) of AFs is viewed as opti-
mization of AF-programs, update of AFs is realized by updates of AF-programs, etc. Once optimization
or update is performed on an AF-program, the new AF-program is easily converted to a corresponding
argumentation framework. In this way, the result of this study implicates potential use of rich LP tech-
niques in AF problems, and contributes to strengthen the relationship between formal argumentation and
logic programming. In future study, we will argue possibilities of importing LP techniques into AF and
investigate characterizing other semantics (such as semi-stable models) of AF in ASP.

Acknowledgments

We thank anonymous referees for useful comments.

C. Sakama, T. Rienstra / Representing Argumentation Frameworks in ASP 15

References
[1] Amgoud, L. and Vesic, S.: A formal analysis of the role of argumentation in negotiation dialogues. Journal

of Logic and Computation 22, 2012, 957–978.
[2] Baumann, R. and Brewka, G.: Expanding argumentation frameworks: enforcing and monotonicity results. In:

Proc. 3rd COMMA, Frontiers in AI and Applications 216, IOS Press, 2010, 75–86.
[3] Caminada, M. and Gabbay, D.: A logical account of formal argumentation. Studia Logica 93, 2009, 109–145.
[4] Caminada, M., Sá, S., Alcântara, J. and Dvořák, W.: On the equivalence between logic programming semantics

and argumentation semantics. Journal of Approximate Reasoning 58, 2015, 87–111.
[5] Dung, P. M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic

programming and n-person games. Artificial Intelligence 77, 1995, 321–357.
[6] Dunne, P. E. and Wooldridge, M.: Complexity of abstract argumentation. In: Argumentation in Artificial

Intelligence (I. Rahwan and G. R.. Simari, Eds.), Springer, 2009, 85–104.
[7] Dvořák, W. and Woltran, S.: On the intertranslatability of argumentation semantics. J. Artificial Intelligence

Research 41, 2011, 445–475.
[8] Dvořák, W., Gaggl, S. A., Wallner, J. P. and Woltran, S. Making use of advances in answer-set programming

for abstract argumentation systems. In: Proc. 19th Int’l Conf. Applications of Declarative Programming and
Knowledge Management, Revised Selected Papers, LNAI, vol. 7773, Springer, 2013, 114–133.

[9] Egly, U., Gaggl, S. A. and Woltran, S.: Answer-set programming encodings for argumentation frameworks.
Argument and Computation 1, 2010, 147–177.

[10] Gelfond, M. and Lifschitz, V.: The stable model semantics for logic programming. In: Proc. 5th International
Conference and Symposium on Logic Programming, MIT Press, 1988, 1070–1080.

[11] Gelfond, M. and Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Genera-
tion Computing 9(3/4), 1991, 365–385.

[12] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.: The DLV system for
knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 2006, 1–57.

[13] Marek, V. W. and Truszczyński, M.: Stable models and an alternative logic programming paradigm. In:
The Logic Programming Paradigm – A 25 Year Perspective (K. R. Apt, V. M. Marek, M. Truszczynski, and
D. S. Warren, Eds.), Springer, 1999, 375–398.

[14] Modgil, S. and Caminada, M.: Proof theories and algorithms for abstract argumentation framework. In:
Argumentation in Artificial Intelligence (I. Rahwan and G. R.. Simari, Eds.), Springer, 2009, 105–129.

[15] Nieves, J. C., Osorio, M. and Cortés, U.: Preferred extensions as stable models. Theory and Practice of
Logic Programming 8, 2008, 527–543.

[16] Sakama, C.: Dishonest arguments in debate games, In: Proc. 4th International Conference on Computational
Models of Argument. Frontiers in AI and Applications 245, IOS Press, 2012, 177–184.

[17] Simons, P., Niemelä, I. and Soininen, T.: Extending and implementing the stable model semantics. Artificial
Intelligence 138(1/2), 2002, 181–234.

[18] Toni, F. and Sergot, M.: Argumentation and answer set programming. In: Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond (M. Balduccini and
T. C. Son, Eds.), LNCS, vol. 6565, Springer, 2011, 164–180.

[19] Wakaki, T. and Nitta, K. Computing argumentation semantics in answer set programming. New Frontiers in
Artificial Intelligence (H. Hattori et al., Eds.), LNAI, vol. 5447, Springer, 2009, 254–269.

[20] Wu, Y., Caminada, M. and Gabbay, D. M.: Complete extensions in argumentation coincide with 3-valued
stable models in logic programming. Studia Logica 93, 2009, 383–403.

