Artificial
Intelligence

ELSEVIER Artificial Intelligence 123 (2000) 185-222
www.elsevier.com/locate/artint

Prioritized logic programming and
its application to commonsense reasoning

Chiaki Sakama?*, Katsumi Inoué

@ Department of Computer and Communication Sciences, Wakayama University, Sakaedani,
Wakayama 640 8510, Japan
b Department of Electrical and Electronics Engineering, Kobe University, Rokkodai, Nada-ku,
Kobe 657 8501, Japan

Received 29 December 1999

Abstract

Representing and reasoning with priorities are important in commonsense reasoning. This paper
introduces a framework gdrioritized logic programmindPLP), which has a mechanism of explicit
representation of priority information in a program. When a program contains incomplete or
indefinite information, PLP is useful for specifying preference to reduce non-determinism in logic
programming. Moreover, PLP can realize various forms of commonsense reasoning in Al such as
abduction, default reasoning, circumscription, and their prioritized variants. The proposed framework
increases the expressive power of logic programming and exploits new applications in knowledge
representatiori] 2000 Elsevier Science B.V. All rights reserved.

Keywords:Prioritized logic programs; Abduction; Default reasoning; Prioritized circumscription

1. Introduction

In commonsense reasoning a theory is usually assumed incomplete and may contain
indefinite or conflicting knowledge. Under such circumstances, priority information is
useful to select appropriate knowledge in an incomplete theory and guides us to intended
conclusions. For representing and reasoning with priorities, several prioritized systems
have been proposed in the fieldrainmonotonic reasonindNMR) in Al.

In default logic[48], conflicting default rules produce multiple extensions. Then more
specific default rules are preferred to reduce anomalous extensions. Such preference

* Corresponding author.
E-mail addressessakama@sys.wakayama-u.ac.jp (C. Sakama), inoue@eedept.kobe-u.ac.jp (K. Inoue).

0004-3702/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
Pll: S0004-3702(00)00054-0

186 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

knowledge is implicitly encoded in default rules [17,49], or explicitly specified as priorities
between default rules [3,6,12,50]. On the other hasistumscription[42] introduces
preference over models. A minimal model which consists of minimal possible extensions
of predicates is selected as a preferred model. Further preference between predicates is
specified inprioritized circumscription35]. In abduction an observation has more than

one explanation in general. To select preferred explanations from many candidates, the
simplicity measure is usually adopted as well as other syntactic or semantic criteria [14,
54].

Logic programmingprovides a powerful language for representing and reasoning
with commonsense knowledge [4]. Various extensions of logic programming provide
mechanisms of handling incomplete and conflicting knowledge in many viéysnal
logic programs[40] incorporatenegation as failurento a program and realize default
reasoning.Disjunctive logic programd41] introduce disjunctive rules in a program,
which enables us to reason with indefinite informati&xtended logic programpf20]
distinguish default and explicit negation to represent incomplete information in a program.
Abductive logic program§32] use hypothetical knowledge to realize abduction in logic
programming.

In these extended frameworks, each language introduces different kindsnef
determinismas

e multiple minimal models in normal and disjunctive programs,

e multiple explanations in an abductive logic program,

e conflicting answer sets in an extended logic program.

To reduce such non-determinism in programming knowledge, it is useful to introduce a
mechanism of explicit representation of priorities to specify the intended meaning of a
program. The logic programming languages, however, provide a rather weak mechanism
of specifying priorities in a program. When a logic program contains non-Horn clauses, it
has multiple minimal models in general. Preference is then introduced to select intended
minimal models of a program. However, such preference is defined at the semantic
level, and a program itself does not have a mechanism of representing priorities at the
syntactic level! To reason with priorities in logic programming, several languages which
incorporate priorities into programs emerged quite recently [7-10,13,21,53,56,57].

This paper studies representing and reasoning with priorities in logic programming.
We first introduce a framework gbrioritized logic programming(PLP) which has a
mechanism of explicit representation of priorities in a program. The declarative semantics
of such programs is given by thereferred answer setsvhich incorporate priorities
into Gelfond and Lifschitz’s answer set semantics [20]. Next, we demonstrate that
various forms of commonsense reasoning in Al, such as abduction, default reasoning,
circumscription, and their prioritized versions, are realized in PLP. We analyze the
computational complexity of PLP, and show that the introduction of priorities increases
the expressive power of logic programming.

This paper is an extended form of [53]. The rest of this paper is organized as follows.
In Section 2, a framework of prioritized logic programming is introduced. Section 3
presents applications of PLP to commonsense reasoning in Al. Section 4 discusses the

1 stratified negation [2,46] can express priorities between atoms in a restricted manner.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 187

computational aspect of PLP. Section 5 presents comparisons with related work, and
Section 6 concludes the paper.

2. Prioritized logic programs
2.1. General extended disjunctive programs

Logic programs we consider in this paper general extended disjunctive programs
A general extended disjunctive program (GEDP) consistslet of the form:

Lif--+|Lg|nOtLiq1|---[NOLL;
<~ Liy1,...,Ly,n0tLy1,...,n0tL, (m>=2m>1>k>0), (1)

where eachL; is a positive or negative literal)™represents a disjunction am@: means
negation as failurdNAF). The disjunction to the left of- is theheadand the conjunction
to the right of« is thebodyof the rule. A rule with the empty head is callediategrity
constraint A ground ruleis a rule having no variable. A rule with variables stands for the
set of its ground instances, i.e., the set of ground rules obtained by substituting variables
with elements of the Herbrand universe of a program in every possible way.

Intuitively, the rule (1) is read as: ifall;y1, ..., L,, are believed and all,,+1, ..., L,
are disbelieved, then either some (1 < i < k) should be believed or sonte; (k 4+ 1<
J <) should be disbelieved. The class of GEDPs is introduced in [26,37] as a subclass
of minimal belief and negation as failu@BNF) [38]. GEDPs are a fairly general class
of existing LP languages in the sense that it includes the so-catiedal disjunctive
andextended logic program#/oreover, it can also express the classabfluctive logic
programs which will be discussed in the next section. A GEDP is calledegiended
disjunctive progranfEDP) if it contains na:ot in the head of any rule (i.ek,=1). An EDP
is called anormal disjunctive prograrfNDP) if everyL; in the program is an atom; and an
EDP is called amxtended logic progrartELP) if it contains no disjunctior (< 1). We say
that a set of ground literal$ satisfiesa ground rule of the form (1) €L;41,..., Ly} € S
and{L,,+1,...,L,}NS =0 imply either{Lq, ..., Ly} NS £ D oOr{Ligs1,...,L;}\ S #0.
Also, S satisfies the conjunctiohs, ..., L,;,, notL,;,+1,...,notL, if {L1,...,L,} C S
and{L,;+1,...,L,} NS =40.

The semantics of GEDPs is given by teswer setsThe following definition is due to
[26]. First, let P be anot-free GEDP (i.e.k =1 andm =n) and S € Lp, whereLp is
the set of all ground literals in the languagemfThen,S is ananswer sebf P if S is a
minimal set satisfying the following two conditions:

(i) S satisfies every rule i, i.e., for each ground rule

from P, {L;4+1,..., L} C SimpliesL; € S forsomei (1 <i <!/). In particular, for
each ground integrity constrairt L1, ..., L,, from P, {L1, ..., L,} Z S holds;
(ii) If S contains a pair of complementary literdland—L, thenS = Lp.

188 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Secondly, given any GEDIP and S C Lp, consider the not-free GEDP? (called a
reduc) obtained as follows: a rule

Lyf---]Lg <~ Lita,....Lp
is in PS if there is a ground rule of the form (1) froi such that
(Lig1,...,L;YCS and {Ly41,....L,JNS=4.

Then,S is ananswer sebf P if S is an answer set aPS. Every answer set of a GEDP
P satisfies every ground rule fro [26]. An answer set isonsistentf it is not Lp. The
answer sel p is saidcontradictory A GEDP isconsistentf it has a consistent answer set;
otherwise, the program iaconsistentAn answer sef of a GEDPP is minimalif there

is no other answer se of P such thatS” C S. The set of all answer sets & is written
asASp.

The above definition of answer sets reduces to that of Gelfond and Lifschitz [20] in an
EDP. Note that every answer set of any EDP is minimal [20,37], but the minimality of
answer sets no longer holds for GEDPs. For example, suppose a program with the single
rule

L |notL «,

saying,L is true or not. Then, it has two answer sgtg and@.
2.2. Prioritized logic programs

Next we introduce a prioritization mechanism to a program. Given a GERRd the
set of ground literal€ p, we definel}, = Lp U{notL: L € Lp}. Then a pre-order relation
=, which is reflexive and transitive, is defined Gi3.

Definition 2.1 (Priorities). For any elements; ande, from L%, if e1 < ez then we say
thate, has a higher priority thare;. e1 < e stands fole1 < ez ande, £ e1. The statement

e1 < ez Is called apriority. A relation over elements including variables is defined as
follows. For tuplesx and y of variables, the statemept(x) < p2(y) stands for every
priority p1(s) < p2(t) for any instances of x andt of y.

Note that if there is a priorityg; < e2, e1 andez do not have common instances. For
example, there is no priority like(x, a) < p(b, y) becausey(b, a) £ p(b,a).

Given a set® of priorities, we define the closu@* as the set of priorities which are
reflexively or transitively derived using priorities @.

Definition 2.2 (Prioritized logic progran). A prioritized logic program(PLP) is defined
as a pair P, @) whereP is a GEDP andp is a set of priorities ovel?,. 2

2We abuse the term PLP for representing both prioritized lpgigrammingand prioritized logigprogram
For the latter case, it is used as a countable noun.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 189

The declarative semantics of a PLP is defined using answer sets. In what follows, for
any setsS € Lp andT < Lp, and for any ground literal.,, L € S\ T meansL € S and
L ¢ T;andnotL € S\ T meansL ¢ SandL € T.

Definition 2.3 (Preference between answer 3etSiven a PLP(P, @), the relationC is
defined over the answer sets®fas follows. For any answer sefsg, S», andSs of P,

(i) S1C S1.

(i) SLCSoif

Jep € 52\ S1[ey € S1\ S2 such that(er < ep) € &*
A —Jez € S1\ S2 such thatlez < e3) € D).

(i) If S1C S» andsS, C S3, thenS; C S3.
We say thatS, is preferableto S; with respect tad if S1 C S2 holds. We writeS; — S» if
S1C S2 andSs Z S3.

By the definition,S1 C S> holdsiiff S»\ 1 has an elememrb whose priority is higher than
some elements in S1 \ S2, and S \ S2 does not have another elemegtwhose priority
is strictly higher thare,. In particular, the condition{3ez € S1 \ S2 such thatez < e3) €
@*) of (ii) is automatically satisfied if there is no priority chained over more than two
different elements (i.e¢1 < e2 < e3 implies eithere; = ez Or ez = e3).

Example 2.1. Let (P, @) be the PLP such that

P: plq<,

qglr <.
D p=xgq,q=r

Then,{p, r} and{q} are two answer sets df, and{q} C {p, r}. Note that{p, r} Z {¢} by
the presence af <r in @.

Definition 2.4 (Preferred answer sgtLet (P, @) be a PLP. Then, an answer $etf P is
called apreferred answer sg€br p-answer seffor short) of(P, @) if S T S impliesS'C S
(with respect to®) for any answer se§’ of P. The set of all p-answer sets 6P, @) is
written asPAS p,).

Intuitively, the p-answer sets are answer sets including elements with the highest
priorities with respect t@. By the definition,(P, ®) has a p-answer set # has a finite
number of answer sets.

A PLP and p-answer sets are useful when a program has multiple answer sets and
a reasoner wants to filter them out according to her preference. For instance, indefinite
information in a disjunctive logic program is reduced by the prioritization mechanism of
PLP.

190 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Example 2.2. Let Py be the program
batterydead| ignition-damaged— turn-key, —start,
turn-key <,
—start <,

where the first rule attributes the failure of starting a car to a battery or an ignition. Now a
reasoner empirically knows that an ignition causes a problem less frequently than a battery.
This situation is expressed by the priority

@: ignition-damagedk batterydead

Then, the p-answer set 6Pp, @) becomesS = {turn-key, —start, batterydead.
Note that the above situation is also expressed using negation as failure. Suppose the
programpPy which is obtained fronPgy by rewriting the first rule with

batterydead<«— turn-key —start, not ignitiondamaged

Then, S becomes the answer set of the progr&m However, such a trick is not useful
in dynamically changing situations. Suppose that the reasoner later finds that the car-radio
works and there is the integrity constraint

IC: <« batterydead radio-work,
saying that a radio does not work with a dead battery. Let
P = P1 U {radio-work <~} U {IC}.

Thenitis impossible to get the alternative solutignition-damagedrom P,. By contrast,
using PLP the p-answer set of

P3 = Py U {radio-work <} U {IC}

becomegturn-key, —start, radio-work, ignition-damagedl, as intended.

Thus PLP can naturally specify prioritized knowledge, and can select appropriate answer
sets according to the change of situations. Note that any knowledge which is irrelevant to
preference is not affected by the selection of p-answer sets. For example, consider the
programP4 which is obtained fronPg by replacing the first disjunctive rule with

batterydead| ignition-damaged cold-morning<— turn-key, —start,

wherecold-morning has no priority over the other two disjuncts. ThéRy, @) has the
p-answer sefturn-key —start, cold-morning in addition toS.

2.3. Properties of PLP
The p-answer sets of PLPs extend the answer sets of GEDPs.

Proposition 2.1 (Relation between answer sets and p-answer degsj P, @) be a PLP.
Then,PASp.¢) € ASp. In particular, PAS (p g = ASp.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 191

Thus, the answer sets of a program are characterized as a special case of the p-answer
sets of a PLP with empty priorities. It is also clear that if a progrrhas the unique
answer set, it also becomes the unique p-answer sét,@b) for any ®.

The above proposition presents that introducing priorities reduces the number of possible
solutions in general. However, such reduction is not necessarily monotonic, i.e., increasing
priorities in a PLP does not always decrease the number of p-answer sets.

Proposition 2.2 (Nonmonotonicity)Let (P, ®1) and (P, @) be two PLPs. Thenp; C
@, does not implyPAS (p.¢,) € PAS P, ay)-

Example 2.3. Let P be the program

plg <,

qlr<,
<~q,r,

and®, =0, &2 ={p <q},andd3z = {p < ¢q,q <r}. Then(P, ®1) has the p-answer sets
{p,r}and{g}; (P, ®2) has{g}; and(P, ®3) has{p, r}.

As an example of the above program, consider the following situation. There are three
different medicinep, ¢, andr. A patient has to take eitheror ¢, and eitheg orr. Also,
itis known that taking; andr together causes side effects (hence they should not be taken
together). With the empty prioritie®, there are two possibilities of takifg, r} or {¢}.
If it is known that the medicine is more effective thamp, she prefers takingy} under the
priority @». Later, the medicine is known as the best one asdn, then{p, r} is the best
choice.

In the above exampldy} is selected as far a®, is concerned, while the selection
is changed when more informatiabg is available. Thus, p-answer sets characterize the
situation in which previous beliefs may possibly be rebutted according to the change of
priorities.

In PLPs priority relations are defined over elements frGin, but they are used to
express priorities over more general forms of knowledge.

e Priorities between conjunctive knowledge

Suppose that a priority relation exists between conjunctions of elements:

(elv"'vem)i(ea_a"'ae;l)

(or sets of element®y, ..., e} <{e],....e,}).
Then it is expressed in a PLP, @) by introducing the rules
eg<e1,...,em; and ep<«ei, ... e,

*Tn

to P with the newly introduced atomg ande(,, and the priorityeg < e, in @.
e Priorities between disjunctive knowledge
Suppose that a priority relation exists between disjunctions of elements:

(e1 |-+ lem) =2 (|- 1ey).

192 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Then it is expressed in a PLP, @) by introducing the rules

/

;o (forj=1,...,n)

eo<«e (fori=1,...,m) and ep<«e

to P with the newly introduced atomg ande(,, and the priorityeg < e, in @.
e Priorities with preconditions
Suppose that a priority relation holds under some condifion

(e1=xXex) < T
Then it is expressed in a PP, @) by introducing the rules
el <e1, I’ and e, <«ep I’

to P with the newly introduced atomg andes, and the prioritye; < e, in @.
e Priorities between rules
Suppose that a priority relation exists between (conflicting) rulg.in

(H1 < B1) X (H2 < B2).
Then it is expressed in a PLP, @) by introducing the rules
ri1<B1 and rp <« B>
to P with the newly introduced atomg andr,, and the priorityr; < r2 in @.

We illustrate the above third and fourth cases using examples.

Example 2.4. A person drinks tea or coffeée@a| coffee<), but she prefers coffee to tea
when sleepy (ea = coffeg <« sleepy. Such a conditional priority can be encoded in a
PLP as follows. Assume thasleepy<) holds. Then, thé P, @) with
P: tea| coffee«,
ted < tea sleepy
coffeé < coffee sleepy
sleepy«—.

@: ted < coffeé.

has the p-answer sgtleepycoffee coffeé}. Next, if it turns out that no coffee is available,
then the PLR P U {—coffee<-}, @) has the p-answer sitleepytea ted, —coffeg. Thus,
PLP chooses an appropriate answer set according to the change of situations.

Example 2.5. Let P be the program

innocent<« notguilty,
guilty < notinnocent

If one is presumed innocent unless proven otherwise, the first rule is preferred to the second
one. The situation is expressed in the R @) as

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 193

P: innocent« notguilty,
guilty < notinnocent
Finnocent<— Not guilty,
rguilty <— nNotinnocent
@ rguilty < Tinnocent
Then,(P, @) has the p-answer s@hnocentrinnocent, Which corresponds to the solution
by the first rule.

As shown above, priorities between rules are expressed in terms of priorities between
atoms. However, this transformation does not work well when a program is inconsistent.

Example 2.6. Let P be the program
flies < bird,
—flies <« penguin
bird < penguin
penguin«—,

which has the contradictory answer ggt. If the second more specific rule is preferred to
the first more general one, introducing the rules

Tlies < bird,
rflies <— penguin

and the priorityriies < r—fiies iS Of Nno use. In fact, the transformed program also has the
answer selp.

In the above example, the first rule is usually regarded as a defeasfdalt rule.
Specifying priorities between conflicting default rules will be discussed in Section 3.2.2.
3. Commonsense reasoning in PLP

In this section, we present applications of PLP to commonsense reasoning in Al.

3.1. Abduction

Abduction is inference to explanations and is realize@bguctive logic programming
We first review the framework of abductive logic programming in terms of GEDPs.

Definition 3.1 (Abductive logic progran26]). Let P be a GEDP ani4 a set of literals
calledabduciblesThen, arabductive logic progranfALP) is represented as a GEDP

IT=PU{A|notA <—: A e A}. (2)

194 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

The setA is identified with the set of ground instances frotnand any instance of an
elementfromA is also called an abducible. LBt be an ALP and a ground literal which
represents anbservation® Then, a sefZ € A is anexplanatiorf of O in IT if there is a
consistent answer sgtof I7 such thattE = SN .4andO € S.

E is an explanation o® in IT iff S is a consistent answer set of U {« notO} such
thatE = SN A [26].

In the above definition, additional disjunctive rules in (2) mean that “an abdugilide
assumed or not”. Then, with the constrairtnot O asserting O should hold”, an answer
set of IT U {<— notO} contains abducibles which constitute an explanatio@ of

Example 3.1. Let IT be the program

wetshoes«— wetgrass

wetgrass< rained,

wetgrass<— sprinkleron,

rained| notrained<—,

sprinkleron | not sprinkleron <,
whererainedandsprinkleronare abducibles. Then, given the observatiba: wetshoes
the progranmy U {<— notO} has three answer sets

{wetshoeswetgrass rained},

{wetshoeswetgrass sprinkler-on},

{wetshoeswetgrass rained, sprinkleron},

which imply that{rained}, {sprinkleron}, {rained, sprinkleron} are the possible explana-
tions of O.

3.1.1. Minimal abduction

In abduction, selectingest explanationffom many candidate explanations is partic-
ularly important. In this respecitninimal explanations are usually preferred as simplest
hypotheses to explain an observation. An explanatiois minimalif no E’ C E is an
explanation. Such minimal abduction is expressed in PLP as follows.

Definition 3.2 (Minimal abduction. Given an ALPIT and an observatio®, minimal
abductionis defined as a PLPIT, ®ua) Where
dyva={A <notA: A c A}.

In @pa, the priority A < notA is read as A is less likely to happen”. This priority
condition has the effect of eliminating an abduciblein each p-answer set whenever

3 Without loss of generality an observation is assumed to be a (non-abducible) ground literal [29].
4 Explanations considered here aredulousor braveexplanations [15].

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 195

possible. An answer sef is called.A-minimal if there is no answer sef’ such that
S’Nn.Ac SN .A. Then the following results hold.

Lemma 3.1 (Minimal explanation versugl-minimal answer set, [26]).et IT be an ALP
and O an observation. Ther@ has a minimal explanatiof' in 7 iff IT U {< notO} has
a consistenfd-minimal answer sef such thatt = SN A.

Theorem 3.2 (Minimal abduction in PLP)Let (11, ®va) be a PLP representing minimal
abduction. Then, an observatiof has a minimal explanatior£ in I7T iff (IT U {«
notO}, ®ya) has a consistent p-answer s¢such thatt = SN A.

Proof. By Lemma 3.1, it is enough to show thétis a consistentd-minimal answer set
of IT U {<« notO} iff S is a consistent p-answer set@f U {<— notO}, duma).

Put IT" = IT U {< notO} and letS be a consistent answer set Of. Then, S is a
consistent4d-minimal answer set of’
iff for any consistent answer s@t of 17, 3A € (S\ T) N A implies3A’ € (T \ S) N A,
because otherwisEN AcC SN A
iff for any consistent answer s&tof 17, 3A € A such thatfA € S\ T andnotA € T \ S)
implies3A’ € A suchthatA’ € T\ S andnotA’ € S\ T)
iff for any consistent answer s&tof IT', S T T implies T C S with respect tabya
iff S is a consistent p-answer set@’, ®ya). O

Example 3.2.In Example 3.1, letdya = {sprinkleron < not sprinkleron, rained <
not rained. Then,(IT U {« notO}, ®ya) has two p-answer sefsvetshoes wetgrass
rained} and{wetshoes wetgrass sprinkler-on}, which imply the minimal explanations
{rained} and{sprinkleron}, respectively.

3.1.2. Prioritized abduction

Although minimal abduction reduces the number of possible explanations, it is not
strong enough to select intended explanations. In fact, an abductive logic program
generally has multiple minimal explanations. To specify further priorities between minimal
explanations, we apply the priority relatien to abducibles and apply the relatiohto
explanations.

Definition 3.3 (Priority over abducibles For any abduciblesi; and A from A, if
A1 < Ay we say thatA, has ahigher priority thanA;. Let @ 4 be a set of priorities
over abducibles. For two sefs C A and F C A, E C F is defined as in Definition 2.3
with respect to the priorities i 4.

Definition 3.4 (Preferred minimal explanatign Let I7 be an ALP and® 4 a set of
priorities over abducibles. Given an observat®pa minimal explanatioi of O is called
a preferred(minimal) explanationif £ C F implies F C E (with respect tod 4) for any
minimal explanatiorF' of O.

196 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

By the definition, a minimal explanation is preferred if it contains an abducible with a
relatively higher priority than those in any other explanation. In particular, if an ALP has
the unique minimal explanation, it is always the preferred explanation.

Definition 3.5 (Prioritized minimal abduction Let (/1, ®ya) be a PLP representing
minimal abduction. Given a seb 4 of priorities over abduciblegprioritized minimal
abductionis defined as a PLPI1, @ppa) Where

Ppma= PmaU{NOtA; <NOtA;: (A; X A;) € Dy}

In the definition, the additional prioritgotA; < notA; is read “an abducibld ; is less
likely to happen tham;”. Introducing this priority to®ya, any p-answer sef satisfying
‘notA;’ is preferred. Thus, preferred minimal explanations are computed by prioritized
minimal abduction.

Theorem 3.3 (Preferred minimal explanation versus prioritized minimal abductioe).
IT be an ALP@® 4 a set of priorities over abducibles, ar@ an observation. Ther is a
preferred minimal explanation @ iff (I7 U {<— notO}, ®pyma) has a consistent p-answer
setS such thatt = SN A.

Proof. PutlT’ = IT U {< notO}. Then,E is a preferred minimal explanation ¢f

iff £ is a minimal explanation o® and for any minimal explanatiof” of O, EC F
implies F C E (with respect tad 4)

iff S is a consistent p-answer set @', ®ya) with E = SN A (Theorem 3.2), and for
any consistent p-answer sgtof (IT', dya) With F=T N A, SN AC T N A implies
TNAC SN A (with respect tad 4), henceS C T impliesT T S (with respect taPpwa)
iff S is a consistent p-answer set@’, @pma) With E=SNA. O

Example 3.3. In Example 3.2 suppose that a reasoner does not use the sprinkler, hence a
good reason exists to prefardt sprinkleron’ to ‘ notrained. The situation is represented
using the prioritized minimal abductidiil, ®pma) where®pya contains the priority

not rained=< not sprinkleron,

together with the priorities inbya. Then, the PLP(IT U {«< notO}, ®pua) has the
unique p-answer s¢tvetshoes wetgrass rained}, which implies the preferred minimal
explanation{rained}.

3.2. Default reasoning

3.2.1. Knowledge system

Default reasoning is a form of reasoning with incomplete information. Poole [44]
proposed a simple framework for default reasoning, which is reformulated by Inoue [28]
in the context of logic programming as follows.

A knowledge systens defined as a paik = (P, A) where P and A are EDPs
representindactsanddefaults respectively? A fact or default containing no variable is

5Inoue in [28] introducesk with ELPs P andA. Gelfond [19] introduces a similar system with EDPs.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 197

calledground GivenK = (P, A), anextension base defined as a consistent answer set
of P U D whereD is a maximal subset of the ground instances of elements fiom

Example 3.4. Let K1 = (P1, A1) be the knowledge system such that

Py: —flies(x) < penguirx),
bird(x) < penguirix),
bird (polly) «,
penguiritweety < .

Aq: flies(x) < bird(x).

Then K1 has the unique extension ba$e-= {bird(polly), penguiritweety, bird (tweety,
flieg(polly), —flies(tweety}. Note that the default rule im1 is applied forx = polly but
not for x = tweety sinceP; U {flies(tweety} is inconsistent.

In abduction, minimal hypotheses are preferred to explain an observation. By contrast,
in default reasoning hypotheses are assumed as many as possible unless they cause
contradiction.

To formulate default reasoning in PLP, we define the PLP expression of a knowledge
system.

Definition 3.6 (Knowledge system in P)PGiven a knowledge systeiki = (P, A), its
PLP expressiol/1, &ks) is defined as follows.

() Anyrulein P isincluded infT.

(i) Any rule Head<« Body in A is transformed to the rules

Head< §(x), Body, 3
8(x) | nots (x) < (4)

in I1, wherex represents variables appearing in the rule, &(d is a newly
introduced atom uniquely associated with each rule frtom
(i) Foranyd(x) introduced above, the priorityots (x) < §(x) is in dks.

In the above transformation, the rule (4) says that the corresponding default rule (3) is
effective or not, and priorities ibks express that default rulemrmallyhold. In this way,
PLP can represent a knowledge system in a single prograogether with prioritiesbks.

Let D be the set of ground instances of any atdm) in I7. An answer sef is called
D-maximalif there is no answer set’ such thatS "D c §' N D. Let Lk be the set of all
ground literals in the language &f. Then the following results hold.

Lemma 3.4 (Extension base versuB-maximal answer set)Let K = (P, A) be a
knowledge system an@ the transformed program as above. dfis a consistentD-
maximal answer set af7, there is an extension base of K such that7 = SN Lg.
Conversely, iff’ is an extension base @&f, there is a consisterf>-maximal answer se§
of IT suchthatSNLx =T.

198 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Proof. If S is a consistenD-maximal answer set af7, S is a consistent answer set Gf
and for any consistent answer $ébof I7, §; € S’ \ S impliesdz € S\ §’ for somes, € D,
because otherwis&N D c S’ N D. Then, it holds thal’ = S N Lk is a consistent answer
set of P U D with someD C A, and for any consistent answer $€tof P U D’ with

D' C A,d e D'\ Dimpliesd € D\ D’ for some ground defauli$ andd’. Hence,T is

a consistent answer set 8fU D whereD is a maximal subset of the ground instances of
elements fromA. The converse is shown in a similar mannen

Theorem 3.5 (Extension base versus p-answer sebt K = (P, A) be a knowledge
system and /1, &ks) its PLP expression. If is a consistent p-answer set @fl, @s),
there is an extension bageof K such thatl’ = § N Lg. Conversely, ifl" is an extension
base ofK, there is a consistent p-answer setf (11, ®ks) suchthatSN Lx =T.

Proof. By Lemma 3.4, it is enough to show th&tis a D-maximal consistent answer set
of IT iff S is a consistent p-answer set(@f, &s).

S is aD-maximal consistent answer set[af
iff S is a consistent answer set&fand for any consistent answer $étof I7, 1€ §'\ S
and (notsy) € S\ S’ imply 82 € S\ §’ and (nots2) € S’ \ S for any 81,82 € D. As
(notd1 < 81) € dks and(notdy < §2) € Ps, 51 € S\ S and(notsy) € S\ S’ iff S ;
andsz € S\ §” and(notsy) € S\ Siff S'C S.

Thus,S is aD-maximal consistent answer setaf
iff S is a consistent answer set of and for any consistent answer sgtof 17, SC §’
implies S’ C S with respect tabgs
iff S is aconsistent p-answer set@f, ®xs). O

Example 3.5. The knowledge systeiki; of Example 3.4 is expressed in the PUR, &ks)
as
IT: —flies(x) < penguirx),
bird(x) < penguirix),
bird (polly) <,
penguiritweety <,
flies(x) < &(x), bird(x),
d(x) | nots(x) <.

dks: nots(x) < 6(x).

Then (11, ®ks) has the unique p-answer dgtird (polly), penguiritweety, bird(tweety,
fliegpolly), —flies(tweety, § (polly)}, which corresponds to the extension bassf K.

3.2.2. Prioritized default reasoning

A default theory generally has multiple extensions and priorities are used for se-
lecting an intended one. In this section, we introduce priorities to default reasoning in
PLP.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 199

Example 3.6. Let K2 = (P2, A2) be the knowledge system such that

P>: bird(x) < penguirnix),
bird (polly) «,
penguiritweety <« .

Agp: flies(x) < bird(x),
—flies(x) < penguirx).

Compared with Example 3.4, the first rule#a is placed atA, as a default rule. TheK>
has another extension basé= {bird(polly), penguiritweety, bird(tweety, flies(polly),
flies(tweety}, in addition toS = {bird(polly), penguiritweety, bird(tweety, flies(polly),
—fliegtweety}.

In Example 3.6 we want to prefef to S’ as in Example 3.4, becauseis produced
by the default rule—flies(x) < penguirix) which presents an exception of the rule
flies(x) < bird(x). To select the intended extension base, we need a mechanism of
specifying priorities between defaults.

To this end, we combine the technique of prioritization over rules presented in
Section 2.3 with the PLPIT, ®ks) in Section 3.2.1. For each default riflead <— Bodyin
A, itsnamed rulgs defined as (x) = (Head < Body) wherer(x) is an atom representing
the defaul) name and x represents variables appearing in the rule. A default rule
Head < Bodyis identified with its default name. The set of ground instances of default
names of all defaults i is denoted byv(A).

Definition 3.7 (Generating defaujt Let K = (P, A) be a knowledge system. A ground
defaultr from A is calledgeneratingin an extension basg if S satisfies the body of.
The set of all default names such that the corresponding defaults4rarme generating in
S is denoted byGD(S).

We introduce the priority relatior over default names.

Definition 3.8 (Priorities between default rulgsFor any default names andr; from
N(4), if rj < r; we say that a default ruke has ahigher priority thana default ruler;.

Intuitively, r; < r; means that the defauit has the precedence over the defayin the
generation of an extension base. Using the priority, we select an extension base which is
generated by default rules with relatively higher priorities.

Definition 3.9 (Preferred extension bakd.et K = (P, A) be a knowledge system and
®p a set of priorities over default names. For any extension b&sesd 7' of K,
GD(T) C GD(S) is defined as in Definition 2.3 with respect to the prioritiesdp .
An extension baseS is called apreferred extension basé GD(S) E GD(T) implies
GD(T) C GD(S) (with respect tabp) for any extension basg of K.

200 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Definition 3.10 (Prioritized knowledge systgmLet (17, ®ks) be a PLP representing
a knowledge systenk = (P, A). Given a setdp of priorities over default names, a
prioritized knowledge systemdefined as a PLPITg, ®pks) such that

I =ITUR
whereR = {r < §, Body| (Head<« §, Body) € IT andr = (Head<« Body) € A},
Pprs= PxsU Pp.

In the definition,R introduces rules which imply default names (cf. Section 2.3)&pd
introduces priorities over defaults. We show that the RLR, ®pks) realizes prioritized
default reasoning.

Lemma 3.6 (Prioritized knowledge system versus knowledge systéml) (I7z, Ppks)
be a prioritized knowledge system.Slfis a p-answer set ofl1g, ®pks), S\ N(A) is a
p-answer set ofl1, dks).

Proof. Priorities in®@p within ®pksdo not relate to any priority ibks, and the priorities
in @p filter the p-answer sets dafl7, dks) using default names derived by the rules in
R. Thus, if S is a p-answer set oflTz, ®pks), removing default names frorfi makes
S\ N(A) ap-answer set afl7, &ks). O

Theorem 3.7 (Preferred extension base versus prioritized knowledge systeet)k =
(P, A) be aknowledge system a set of priorities over default names, atldg, ®pks)
a prioritized knowledge system.dfis a p-answer set off Tz, @pks), there is a preferred
extension base’ of K (with respect to®p) such thatS’ = S N Lg. Conversely, ifs’
is a preferred extension base &f (with respect todp), there is a p-answer sef of
(ITr, Ppks) suchthatSN Lx = S'.

Proof. Let S be a p-answer set 0fTg, @pks). As S\ N(A) is a p-answer set @i, dks)
(Lemma3.6)S" = SN Lk is an extension base &f = (P, A) (Theorem 3.5). LeT" be any
answer set ofTg such thafl' \ N(A) is a p-answer set Gfi7, dks). Then, 7' =T N Lk is
also an extension base kf= (P, A). As S is a p-answer set @fTg, ®pks), S C T implies

T = S with respect todpks. SinceGD(S") € S andGD(T') € T, GD(S") & GD(T")
implies GD(T") = GD(S’) with respect to®dp. Hence,S' is a preferred extension base
of K. The converse is shown in a similar mannern

Example 3.7.The knowledge systenk, of Example 3.6 is expressed in the PLP
(I1g, Ppks) as
ITg: bird(x) < penguirx),
bird(polly) «,
penguiritweety <,
flies(x) < 81(x), bird(x),
—flies(x) < §2(x), penguirix),
ri(x) < 81(x), bird(x),

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 201

r2(x) < 82(x), penguirx),
S1(x) | notd1(x) <,
82(x) | notdo(x) <.

Ppks: Notd1(x) < 81(x), NOtda(x) < 82(x), r1(x) < ra(x).
Then,(IT1g, ®pks) has the unique p-answer set
{ bird(polly), penguiritweety, bird(tweety, flies(polly), —flie(tweety,

1(polly), s2(polly), s2(tweety, r1(polly), rz2(tweety},
which corresponds to the intended extension base.

3.3. Circumscription

3.3.1. Parallel circumscription

In this section we consider realizingrcumscriptionin PLP. We first review the
framework of circumscription from [39].

Given a first-order theor¥, let P andZ be disjoint tuples of predicates from Then
(parallel) circumscriptionof P in T with variable Z is defined as the second-order formula

Circ(T; P; Z)=T(P,Z)y N—3P'Z' (T (P',ZY AP < P),

whereT (P, Z) is a theory containing predicate constaRtsZ, and P/, Z’ are tuples of
predicate variables that have the same arities as those predicateZinThe set of all
predicates other thaR, Z from T is denoted byQ. The predicates iQ are called the
fixedpredicates.

For a structure, let | M| be its universe antf/ [[C]] the interpretations of all individual,
function, and predicate constandsin the language. For any two structur®g and M,
M1 < M iff

() 1M1] = |M2],

(i) MillQll = M2l O],

(i) M1[[P] C Mo[[P]l.

A model M of T is a model ofCirc(T; P; Z) iff there is no modelN of T such that
N<KM.

To realize circumscription in the context of logic programming, we assume a first-order

theoryT as a set oflausesf the form:

ALV ---VA V=BV ---V =B, (5)

where each; (1<i </;/ > 0) andB; (1< j <m;m > 0) are atoms. Also, we consider
the Herbrand modebf T, which has the effect of introducing both thdemain closure
assumptiorand theunique name assumptionto 7' [5,40]. Now the PLP expression of
circumscription is defined as follows.

Definition 3.11 (Circumscription in PLP. Given a circumscriptioQirc(7T'; P; Z), its PLP
expression(/1, ®circe) is defined as follows.
(i) Forany clause (5) iff’, IT has the rule

A1l|---|A; < B1,..., By.

202 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

(i) For any fixed or variable predicatein T, IT has the rule
A(x) | nOtA(x) <.
(i) Priorities are given as

Pcirc = {pi(x) 2notp;(x). pie P (i=1,...,k)}
U{g(x) < notg(x),notg(x) < q(x): q € O}.

Here,x is a tuple of variables in each predicate.

In the transformation, minimizing extensions of predicates fi®ns expressed by the
priority p;(x) < notp;(x) in &crc. On the other hand, each atom with a fixed or variable
predicate is either true or not, and it is expressed by the second disjunctive rule. In this
case, extensions of variable predicates can be varied, while those of fixed predicates are
not affected by priorities over minimized predicates. This situation is expressed by the
symmetric prioritieg; (x) < notg (x) andnotg (x) < g(x) in @circ.

With this setting, circumscription is expressed in terms of PLP. In the followingalso
used to represent an atom with a minimized predicate flgrandg an atom with a fixed
predicate. AlsoP, Z, Q are used to represent the sets of atoms with the corresponding
predicates.

Theorem 3.8 (Circumscription versus p-answer sétgt Circ(T'; P; Z) be a circumscrip-
tion and (11, @circ) its PLP expression. The® is an Herbrand model of Cik@; P; Z)
iff M is a p-answer set off1, @c|rc).

Proof. M is a model ofCirc(T; P; Z) iff there is no modelV of T such thatvV « M. For
any two models\f andN suchtha NQ=NNQ,N <M

iff 3pe P (pe M\ N)A—3p' e P (p'e N\ M)

iff 3pe P (notpe N\M A pe M\N) A—3p' € P (notp’e M\NAp'e N\M)

iff M T N andN Z M (with respect toPcirc).

Hence, forany andN suchthatM NQ=NNQ, N K M iff MC N andN Z M.
Therefore N « M iff (M & N impliesN & M).

On the other hand, for any and N suchthatM N Q #NNQ,if ge (M\ N)N Q
thenM C N by g < notq in &circ. In this caseN £ M also holds bynotg < ¢. Thus,
MCNIff NCEM.ASMNQ#ANNQ, N« M andM « N hold.

Therefore, forany/ andN, N « M iff (M & N impliesN © M) (x).
LetMN(QUZ)=T.If MisaHerbrand model ofirc(T; P; Z), thenM is a minimal
model of T U I'. In this caseM is a minimal model off U {(1 | notx <) € IT}M
iff M is a minimal model of 7™
iff M is an answer set dff.

Conversely, ifM is an answer set dif, M is a Herbrand model df . Thus, the statement
(%) holds for answer set® andN of I7. Hence M is a Herbrand model &€irc(T'; P; Z)
iff M is ap-answer set dfil, ®circ). O

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 203

Example 3.8 ([39]). Let T' be the first-order theoy

block(x) A —ab(x) D ontabldx),
—ontablgb,),

block(b1),

block(by),

where P = {ab}, Z = {ontablg and Q = {block}. Circ(T; P; Z) is expressed in the PLP
(I1, @circ) as

IT: ontablgx) | ab(x) < block(x),
<~ ontablgbq),
block(b1) <,
block(b) <,
ontabldx) | notontabléx) <,
block(x) | notblockx) <.

dcirc: ab(x) < notal(x),
block(x) < notblockx), notblockx) < block(x).

Then,(I1, &circ) has the p-answer set
{block(b1), block(by), ab(b1), ontablgb,)},
which correspond to the Herbrand modelGifc(T; P; Z).

3.3.2. Prioritized circumscription

Next we consider realizingrioritized circumscriptior{35] in PLP.

Let P be a tuple of predicates from a first-order the@rywhich is split into disjoint
parts P1, ..., P.. Thenprioritized circumscription Cir¢T; Py > --- > Py; Z) minimizes
extensions ofP; with a priority higher than those a?; (i < j) with Z varied. The seQ
of all predicates other thah andZ from T are fixed as before. For any two structunés
andMp, M1 < M iff

(i) |M1]=|Ma],
(i) Mol = MO,
(i) foreveryj=1,...,k,if Mi[[P1,..., Pj_1ll= Mo[[P1, ..., Pj_1]lthenM[[P;]l C
Ma[[P11,
whereM[[Py, ..., Pk]l= M[[PLU---U P.]l. AmodelM of T is a model ofCirc(T; Py >
... > Py; Z) iff there is no modelV of T such thatV « M [36].

Given a sefl’ of clauses, the PLP expression of prioritized circumscription is defined as

follows.

6 The unique name assumption holds under the Herbrand interpretation,tegde is omitted inT.

204 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Definition 3.12 (Prioritized circumscription in PLI Given a prioritized circumscription
Circ(T; Py > ---> Py; Z), its PLP expressiofV1, ®pcirc) is defined as follows.
(i) Forany clause (5) i, IT has the rule

A1l|---|A; < B1,..., By.
(i) For any fixed or variable predicatein T, IT has the rule
A(x) | NnOtA(x) <.
(i) Priorities are given as
DpcIRC
={pi(x) Znotp;(x): p;e P, (i=1,...,k)}
U{notp;ti(x) <notp;(y): pi € Pi, pit1€ Pi1 (i =1,....k— 1)}
U{g(x) <notg(x), notg(x) < q(x): g € O}.
Here,x andy are tuples of variables in each predicate.

The transformation is the same as the case of parallel circumscription with the
only difference that the predicate hierarcRy > --- > P is expressed imPpcirc as
notp;+1(x) < notp;(y), which means that extensions fropp is minimized at a higher
priority than those fronp; ;1.

With this setting, prioritized circumscription is characterized by the p-answer sets of

(I1, @pciro)- In the following, p; is also used to represent an atom with a minimized
predicate fromp;.

Theorem 3.9 (Prioritized circumscription versus p-answer ségt Circ(T; Py > -+ >
Py; Z) be a prioritized circumscription andl7, ®pcirc) its PLP expression. The/ is
an Herbrand model of Cir@’; Py > --- > Px; Z2) iff M is a p-answer set dff1, ®pciro)-

Proof. First, any modeM of Circ(T; P1 > --- > Px; Z) isamodel ofCirc(T'; Py, ..., Py;
7). Then,M is an Herbrand model &€irc(7T"; Py > --- > Py; Z) iff there is no Herbrand
modelN of Circ(T'; P1, ..., Px; Z) such thatv <« M. For any Herbrand modeéll and N
of Circ(T; Py, ..., P; Z)suchtha N Q=NNQ, N K« M iff

3 (1<i<k)3Ipie P, (pie M\ N)A—3p; € P; (p; e N\ M)

AVpjePj(j<i)(pjeM < pjeN). (%)
SinceM is minimal wrt the extensions a?, (x) implies
Jk (i<k)3dpke Pr (pr e N\ M).
Hence,(x) iff

Ji(I<i<k)3Ipie Pi(pie M\ N)
A Jk(i <k)3pr € Pe (pr € N\ M)
A =3p; € P; (p; e N\ M)
AVpjePj(j<i)(pjeM & pjeN)

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 205

3i (1<i<k)3Ip; € P (notp; e N\ M)
A k(i <k)3py € Py (notpy e M\ N)
A =3p; € P; (notp; € M\ N)
A—3dpjeP; (j<i)(otp; e M\ N)
A —3p € Pj (j <i) (notp); e N\ M)

3 (1<i<k)3Ip; € P (notp; € N\ M)
A 3k(i < k) Ipx € Py (notpy € M\ N)
A=dp;eP; (j<i) (notp;e M\N)

A —3plePj (j<i) (notpe N\M). (1)

Here,

3 (1<i<k)3Ip; € P, (notp; € N\ M)
A 3k(i < k) Api € P, (Notpy € M\ N)
A—3pjeP; (j<i)(notp;e M\ N) ()

impliesM E N andN Z M (with respect toPpcirc). Therefore(t) impliesM T N and
N Z M. ConverselyM C N andN Z M imply ($). In this case, there is a minimiaivhich

satisfies(f). Consider the minimal’ which satisfies the first conjungip, € P, (notp; €

N\ M) of (3). Then, the second conjungkt (i’ < k) Ipr € P, (notpy € M\ N) is also
satisfied. If the third conjunct is not satisfied, i.Bp; € P; (j <i’) (notp; e M\ N),

then M C N implies N © M, which contradicts the assumption. Hene&lp; € P;

(j <i’) (notp; € M \ N) also holds. Since’ is a minimal one satisfyingip; €

Py (notp; e N\ M), it holds that—3p’ € P; (j <i’) (notp; € N\M). Then, by putting
i =i, (¥) implies (1), thusM = N andN Z M imply (1). Hence, for any andN such
thatMNQO=NNQO,N <M iff M T N andN Z M, therebyN &« M iff (M © N implies
N C M).

On the other hand, for anyf and N suchthatM NQ #A#NNQ, MC N iff NC M
by the same argument as in Theorem 3.8. Therefore, forMdngnd N, N « M iff
(M N impliesN C M). Since Herbrand modeld andN of Circ(T'; P1, ..., Px; Z) are
(p-)answer sets of7 by Theorem 3.8M is an Herbrand model o€irc(T; Py > -+ >
Py; Z) iff M is a p-answer set afil, ®pcirc). O

Example 3.9 ([39]). Let T be the first-order theory

block(x) A —aby(x) D ontabldx),

heavy block(x) A —abp(x) D —ontablgx),
heavy block(x) D block(x),

heavy block(b1), block(bz), —heavy block(by),

206 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

where P; = {alp} and P, = {aby} with P > P», and Z = {ontablg and Q0 =
{block heavy block}. Circ(T; Py > P2; Z) is expressed in the PLHT, ®pcirc) as
IT: ontablgx) | aby(x) < block(x),

abp(x) < ontablgx), heavy block(x),

block(x) < heavy block(x),

heavy block(h1) <,

block(bo) <,

< heavyblock(by),

ontabl€x) | notontablgx) <,

block(x) | notblockx) <,

heavy block(x) | notheavyblock(x) « .

Ppcire: abp(x) < notab(x), abp(x) < notabz(x),
notah (x) < notalp(x),
block(x) < notblockx), notblockx) < block(x),
heavy block(x) < notheavyblock(x),
notheavyblock(x) < heavy block(x).

Then, (11, ®pcirc) has the p-answer set
{heavy block(b1), block(by), block(b2), ontablgby), aby (b1)},
which corresponds to the Herbrand modeGafc(T; Py > Pp; Z).

3.3.3. Connection to the perfect model semantics

It is known that prioritized circumscription is also characterized bypédect model
semanticg46] of a stratified disjunctive program in the absence of fixed and variable
predicates. In this section, we address the semantical relationship between perfect models
and p-answer sets.

As presented in Section 2.1, normal disjunctive programs are defined as a subset of
GEDPs. An NDP consists of rules of the form

A1+ | A < Aj41, ..., Am,NOtApi1,...,NOtA, (n>=m>1>0), (6)

where eachd; is an atom. An NDP is called positive disjunctive prograrif each rule
contains no NAF (i.esn = n). An NDP [T is stratified[46] if it is possible to decompose
the setP of all predicates ofT into the disjoint sets1, ..., P, (calledstrata), such that
for every rule (6) inl7,
(i) predicates of the atom&;, (h =1, ...,[) belong to the same stratufy;

(i) predicates of the atoms; (i =1+ 1,...,m) belong tol J{P: r <s};

(i) predicates of the atomd; (j =m +1,...,n) belong to_J{P;: 1 < s}.
Any decomposition{ P, ..., P} satisfying the above conditions is calledtaatification
of IT.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 207

Let pred(A) be the predicate of an atom. An atom A has ahigher priority thanan
atomB (written B < A) iff pred(A) € P; andpred(B) € P; with i < j. Given two distinct
modelsM and N, M is preferableto N (M <« N) iff for any atomA € M \ N thereis an
atomB € N \ M such thatA < B. A model M is perfectif there is no model preferable
to M.

In a stratified program the existence of integrity constraints causes some problems.
Syntactically, an integrity constraint- p has the same effect as the non-stratified rule
q < p,notg whereg is a new atom appearing nowhere in a program. Semantically, a
perfect model may not beupported2,4] * in the presence of integrity constraints.

Example 3.10.Let IT = {g < notp, < g} with the priority ¢ < p. ThenIT has the
perfect mode|{ p} which is not supported.

Note that the above program has no answer set. Thus, perfect models provide an intuitive
meaning when a stratified program contains no integrity constraints. With this reason, we
assume no integrity constraints in stratified programs hereafter in this subsection.

In a stratified prograni/, the perfect models coincide with the answer sets [47], hence
they also coincide with the p-answer setsaf ¢). In what follows, we present yet another
characterization of perfect models of a stratified NDP in terms of p-answer sets of a PLP.

Given an NDPI1, we define the corresponding first-order the@ry/7) such that any
rule (6) inIT is transformed to the clause

ALV VA V=AY VoAV Apia V-V Ay, (7

in T(IT). We write Circ(T; Py > --- > Py; Z) with Z = ¢ simply asCirc(T; Py > --- >
Pr).

Lemma 3.10 (Perfect model versus prioritized circumscription, [46, Theorem %])et
IT be a stratified NDP andPs, ..., P} a stratification offT. Then,M is a perfect model
of IT iff M is an Herbrand model of Cik@ (I1); P1 > --- > P;).

Let T+(IT) be a positive disjunctive program such that any clause (7§ (fV) is
replaced by the rule

Ap| - | A | Apsa |- | Ay < Ajg1, ..., Ay
in 77 ().

Theorem 3.11 (Perfect model versus p-answer séBt IT be a stratified NDP with the
stratification {P1, ..., P}. Then,M is a perfect model of7 iff M is a p-answer set of
(T*(IT), @strAD Where @sTraT= {NOtp; 1(x) < NOtp;(y) : pi € Pi, piy1 € Pip1(i =
1,....k—1).

7 A model M of an NDP P is supported4] if for any atom A € M there is a ground rule of the form (6) from
P such that{Aq, ..., AJNM=A,{Aj+1,..., Am}ySM,and{A,11,..., ApyNM =0.
8 The expression is modified in our context.

208 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Proof. When there are no fixed and variable predicates, the PLP expression of prioritized
circumscription of Definition 3.12 includes neither disjunctive rules of (ii) nor symmetric
priorities on predicates fron® in ®pcirc. Moreover, any p-answer set @+ (I7) is
minimal with respect to extensions of the predicates fréndue to the minimality

of answer sets (or minimal models) of a positive disjunctive program. Thus, priorities
pi(x) <notp;(x) (i =1,...,k) iIn &pcrc are automatically satisfied. Then the result
follows by Theorem 3.9 and Lemma 3.100

Example 3.11. Let IT be the program

p | g < notr,

r <— nots

with the stratificationP; = {s}, P> = {r}, P3 = {p,q}. It is expressed by the PLP
(T*{T), PsTRAD @S
THUD): plglr <,
rls <.

DSTRAT. notp < notr, notg < notr, notr < nots.

Then,(TT(T), @strap has the p-answer sét}, which coincides with the perfect model
of IT.

The above theorem presents that a stratified NDP is equivalently expressadtbiree
positive disjunctive program plus prioriti€sThe result is also directly extendedltzally
stratifiedNDPs.

4. Computation
4.1. ¢-program

In this section, we provide an algorithm for selecting p-answer sets from answer sets.
For this purpose, we introduce a program transformation which embeds priorities into a
program. To make such embedding easier, we first eliminate NAF formulas in priorities
without changing the meaning of a PLP.
Definition 4.1 (Eliminating NAF from®). Given a PLR(P, @), define(P’, @’) which is
obtained by replacing any NAF formufeta in @ with @ in @', and introducing a new

rulea < nota to P for any such replacement. The resulting prograrf'is

Example 4.1. Let (P, @) be the PLP such that

9 Dimopoulos and Kakas [13] present a different method of replacing NAF with priorities over rules.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 209

P: p<gq,
g|notg <.
d: g =<nolg.
Then,(P’, @") becomes
P': p<gq,
g | notg <,
g < nhotg.
o' g=<7.

(P, @) has the p-answer s&f} which corresponds to the p-answer @edf (P, ®).

Proposition 4.1 (PLP with NAF-free®). Given a PLP(P, @), let (P, ®’) be a PLP
which is obtained by Definitiod.1 If S is a p-answer set ofP, @), there is a p-answer
setS’ of (P’, @’) such thatS’ N Lp = S. In converse, ifS’ is a p-answer set of P/, @),
there is a p-answer set of (P, @) such thatS = S"' N Lp.

Proof. By the definitionga ¢ S iff @ € S’ for anya € Lp. Then the result holds. O

Thus, without loss of generality, in this section we consider PLPs which contain no NAF
formulas in®.

Next we consider representing priorities in terms of rules, which is used for computing
p-answer sets.

Definition 4.2 (¢-program). Given a PLR(P, @), theg-programis defined as
P¢:PU{¢+ <cj,notc;, ¢

. <« ¢, note; | (¢ <cj) e P*).

o<
The newly introduced rules are callgdrules and the atomﬂglf«j and¢,, . are
calledg-atoms The set ofp-rules is finite when the closur@* is finite (modulo variable
renaming). The idea ap-rules is as follows. If an answer set contairysbut does not
containg;, the atom¢;f<cj becomes true by the-rule; else if the converse is the case,
the atomg,._.. becomes true. Thus, if an answer set impijeatoms, it indicates that the
answer set contains a literal which is subject to preferencé&ginthe “strict” priority
relation < is considered instead ok. If ¢; < ¢; andc¢; < ¢; hold, two answer sets
respectively containing andc; have an equal priority with respect to these literals. Using

the ¢-program, the following procedure selects p-answer sets from answer sets.

Definition 4.3 (Procedure for selecting p-answer setiset (P, @) be a PLP such that the
closure@* is finite. Then, the following procedure outputs a dedf answer sets.
(i) PutX andA as the sets of all answer setsRj .
(i) For everyT € X, check the following: for anyc; < cj) € @*, if ¢c—i<c/_ e T and
¢& -, € T' forsomeT’ € X, and there is néc; < cx) € * such thatg; ., €T

and¢, ., € T', then discard” from A.

210 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

In the first step, we assume an external procedure for computing the answer sets of
an GEDPPy. A procedure for this purpose is given in [26] for function-free and range-
restricted GEDPs. In the second step, any answer set which includes a literal with a
relatively lower priority is discarded fromt using priority information encoded ig-
atoms.

Note that if we check preference between answer sets without ysiatgpms, we
have to check priority relations over all literals included in every answer sét. @y
contrast,¢-atoms appear in an answer set Bf only if the answer set contains any
literal which is subject to priorities. Thus, to check preference between answer sets it is
enough to compare answer sets contaigirgfoms and literals appearinggnatoms. Any
answer set including ng-atom is irrelevant to preference, and it becomes a p-answer set
automatically.

We show that the above procedure is used for selecting the p-answer sets of a PLP.

Definition 4.4 (Cycle-fre@. The p-answer sets of a PL{P, @) are calledcycle-freeif
S1C Sp implies Sy C S for any two p-answer set§ andS» of (P, @).

Theorem 4.1 (Soundness/completeness of the procedusg).P, @) be a PLP with finite
@*, and A the set produced by the above procedurd: § A, there is a p-answer sét of
(P, ®) suchthatS =T N Lp. The converse also holds if the p-answer setdf®) are
cycle-free.

Proof. WhenT is an answer setdfy, TN Lp isan answer set d?. Thus, foranyl’ € A,
T N Lp is an answer set aP. If there is anb;i«/ in T, T contains no literat; such that
(ci < cj) € @*, 505 is a p-answer set ofP, ®). Else if there is some, .. in T, it
implies either (a)-37" € X such thatg; . € 7', or (b)37" € ¥ such thatg} . €T’
and¢;<6k eT and¢c—/_<0k € T' for some(c; < cx) € @*. In case of (a), there is nd’
such that7 E 7". In case of (b)¢x € T \ T’ for some(c; < c¢x) € ®*. Then,T Z T’ by
the definition. Thus, in either case, there is no answeSset 7/ N Lp of P, which is
preferable toS =T N Lp. Hence,S is a p-answer set qiP, @).

The converse direction proceeds as follows. SIfiteN Lp | T € X} is the set of
all answer sets of? which includes every p-answer set @P, ®), we show that any
answer set removed from by the procedure does not correspond to any p-answer set.
SupposeT € X. If ¢, ., € T and3T’ € X such that ¢;T<Cj € T’, then there exist
rules: @ .., < cj,notc;) and @ ., < ci,notc;) in Py such thate; € T\ 7" and
cj € T"\ T with (¢; < ¢;) € @*. If there is no¢;<0k in T, there is nacy € T \ T’ such
that(c; < cx) € @*. Thus,T C T'. As the p-ansver sets 0P, @), are cycle-free]’ Z T
holds. Then7 N Lp cannot be a p-answer set@?, @), soT is removed fromA. Hence,
for any p-answer sef of (P, @), thereisasel’ € AsuchthatS=TNLp. O

Example 4.2. Let (P, @) be the PLP such that

P: plqglr<,

s < p.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 211

d: p=xgq,r=s.

Then, thep-program becomes

Pp: plqlr <,

s < p,
+ -

¢p<q A q’ nOtp7 ¢p<q <~ pv nOtQa
+ -

¢, < s,notr, ¢, <r,nots.

First, puty = A ={{p.s,¢,_,. o) g, ¢;,L<q}, {r,¢,_,}} as the set of answer sets of
Pg. Next, forg,,_, in the first answer sety_ is in the second answer set and there is
no ¢,_, in the second one, so that the first one is discarded forhikewise, the third
answer set is dropped from. As a result A = {{q, ¢;}_,}} and{q, ¢;_,} N Lp = {q} is

the unique p-answer set oP, @).

When the p-answer sets of a PP, @) have a cycle, the above procedure is sound but
not complete for computing p-answer sets.

Example 4.3.Let (P, ®) be a PLP such thaP has three answer sef§ = {e1, e2},
Sy = {es, e4}, S3 = {es, e}, aNd @ = {e2 < e3,¢e4 < ¢e5,¢6 < e1}. There is a cycles; C
S» C §3 C S1. However,S> C S7 is not known by comparing; andS2 (with ¢g-atoms). In
this case, all1, S> andS3 are discarded from in the procedure.

Itis generally difficult to judge whether the p-answer sets of a PLP have a cycle or not. In
fact, the structure oP is not useful to know the existence of a cycle in the above example.

4.2. Complexity result

We next address the computational complexity of PLP. A PEP®) is propositional
if P contains no variable and is a set of priorities on ground elements fraij. In this
section, we consider propositional PLPs.

We briefly review some basic concepts of computational complexity. The class P
(respectively NP) represents the set of all decision problems solvable in polynomial time by
deterministic (respectively non-deterministic) Turing machines.pidignomial hierarchy
consists of classes?, =P, andI1? defined as

Af=32f=Tj=P,
AP =P%, sP =NP%, MP,=coxf, (k>0).

In particular,Af = P, P’ = NP, andI1} = co-NP.

In the aboveA,ﬁ’Jrl (respectivelyZ,f’H) is the set of problems solvable deterministically
(respectively non-deterministically) in polynomial time with an oracle for the problems in
xF. The clasd1f, ; consists of problems whose complements argfn; .

212 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222
For GEDPs, the next results hold.

Lemma 4.3 (Complexity result for GEDP, [26]).et P be a propositional GEDP. Then,
(i) Deciding the existence of an answer sePab E%—complete.
(i) Deciding whether a literal is true in some answer sePok E,%-complete.
(i) Deciding whether a literal is true in every answer setrois l‘l,%-complete.

The complexities of problems in PLP are as follows.

Lemma 4.4 (Checking a p-answer set)et (P, @) be a propositional PLP. Given a st
of literals, deciding whethe§ is a p-answer set afP, @) is in l‘l,%.

Proof. Givens, the reduct”? is constructible in polynomial times. is not an answer set of
P iff there is a sets’ c S which satisfies every rule iR®. Since a guess fo§’ is verified

in polynomial time, deciding whethef is an answer set of is in co-NP. On the other
hand, given an answer sgtchecking whethe§ — 7 holds for another answer sgtof P

is done in polynomial time. If sucl does not existS is a p-answer set. As any answer
setT of P is decided with a call to an NP-oracle, the problem is in cOiRIR I13. O

The next lemma is used in the proof of Theorem 4.6. (The expression is changed in our
context.)

Lemma 4.5 (Complexity result for minimal abduction, [15, Theorem 23]gt P be

a propositional normal disjunctive program an@ a ground atom representing an
observation. Then, deciding whether an atom is included in some credulous minimal
explanation ofO in P is ESF,’-compIete.

Theorem 4.6 (Complexity result for PLP)Let (P, @) be a propositional PLP. Then,
(i) Deciding the existence of a p-answer set®f®) is £3-complete.
(i) Deciding whether a literal is true in some p-answer set®f®) is £3-complete.
(i) Deciding whether a literal is true in every p-answer set Bf @) is Hg-complete.

Proof.
() (P,®) has a p-answer set ifP has an answer set. Then, the result holds by

Lemma 4.3.

(i) To see the membership B3, first guess a set containing a literal. Then, whether it
is a p-answer set can be verified in polynomial time usiﬁ@a)racle (Lemma4.4)
and thus decidable with a query toiéé oracle. Hence, the problem is ES.
On the other hand, deciding whether a literal is included in some (credulous)
minimal explanation i§:§’-complete in NDPs (Lemma 4.5). Since GEDP's strictly
include NDPs, the corresponding decision problem in GEDPEéPshard. As
minimal explanations are computed via p-answer sets (Theorem 3.2), the problem
of deciding whether a literal is true in some p-answer set is Bfsbard.

(i) is a complementary problem of (ii). Hence, the result holds by (iip

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 213

Corollary 4.7 (Complexity result for non-disjunctive PLR)et (P, @) be a propositional
PLP such thatP is an ELP. Then,
(i) Deciding the existence of a p-answer set®f @) is NP-complete.
(i) Deciding whether a literal is true in some p-answer set@f®) is E%—complete.
(i) Deciding whether a literal is true in every p-answer set Bf ®) is [13-complete.

Proof. In the absence of disjunctions in a program, the complexity of each problem
reduces in one level of the polynomial hierarchy. Then, the results hald.

Comparing the results of Lemma 4.3 and Theorem 4.6, an introduction of priorities to
a program causes an increase in complexity by one level of the polynomial hierarchy (for
the problems of (ii) and (iii)).

5. Related work
5.1. Prioritized logic programming

In this section, we compare the PLP with the existing prioritized logic programming
systems. We focus on the following points for comparison.

Priority: The definition of priority relations.

LanguageThe class of programs on which priority reasoning is introduced.

Commonsense reasonimgpplications to commonsense reasoning in Al.

5.1.1. Stratified programs

Stratified programs introduce a restricted form of priorities to logic programs.

Priority: In stratified programs priorities over atoms are decided by the syntactic
structure of a program. By contrast, priorities in PLP are specified separately from
the program. Hence, different programmers can specify different priorities in the same
program (as far as they do not contradict each other) without changing the body of
the program. In converse, any change in a program does not affect priorities. Moreover,
priorities in PLP generalize those in stratified programs in the following sense. First, any
stratification of a program can be expressed in terms of priorities in a PLP (Theorem 3.11),
but the converse transformation, representing arbitrary prioditiegsa single stratification,
is generally impossible. Secondly, in a stratified progmnery atom must beranked
according to the syntax of the program, while no such restriction exists in PLP and priority
are defined on any subset 6f,. Thirdly, PLP can express priorities between not only
atoms but also literals and NAF formulas in GEDPs.

Language Stratified programs are defined as a subset of normal disjunctive programs.
A PLP is defined for GEDPs which include normal disjunctive programs.

Commonsense reasonintratified programs can realize a restricted version of
prioritized circumscription [18]. Those restrictions are substantially relaxed in PLP
(Section 3.3.2). Further comparison is presented in Section 5.2.3.

214 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

5.1.2. Brewka

Brewka [6] introduces priorities to Reiter's default logic to resolve conflicts between
default rules. In [7] a version of logic programming is proposed.

Priority: A strict partial order<, i.e., anirreflexiveand transitive relation, is introduced
over rules. By contrast, we used a reflexive and transitive relation over literals and
NAF formulas. Prioritization over rules is simulated in PLP as presented in Sections 2.3
and 3.2.2. This point is also discussed later in Section 5.1.8.

Reflexive relations permit to represent cyclic priorities which are useful for representing
tie situations. An example of this is demonstrated for representing priorities over fixed
predicates of circumscription in Section 3.3. Note that in PLP the existence of reflexive
relations between elements and the absence of relations are different in effect. For instance,
consider the theory = {p < g} wherep has the predicate to be minimized aptas the
fixed predicate. It is represented in the PUP, &circ) with

IT={p < q,q|notg <},
dcirc = {p X NOtp, g < Notg, notg < g}.

Then, the program has two p-answer s@tand {p, ¢} which correspond to the two
Herbrand models of the circumscription @f If we represent the equal priority simply

by not mentioning any priority betweenandnotg, IT with @ o~ = {p < notp} has the
unigue p-answer s@&t The another modédlp, ¢} does not become a p-answer set because
there is no priority to select it. Thus, a reflexive relation is effective for representing tie
situations which are not affected by other priorities. (See also the comparison of priority in
Section 5.1.3.)

LanguageBrewka [7] considers ELPs which are a strict subclass of GEDPs. The well-
founded semantics is considered as an underlying semantics.

Commonsense reasonin@he primary interest of Brewka is to resolve conflicts
between default rules. PLP is used for not only default reasoning but other (prioritized)
commonsense reasoning such as abduction and circumscription. On the other hand,
Brewka [7] introduces a method of encoding preference information in a program and
using them to reason about priorities. The PLP framework would be also extended in this
direction but it is not addressed in this pagér.

5.1.3. Brewka and Eiter
Brewka and Eiter [8] introduce preference over answer sets in extended logic programs.
Priority: In [8] a strict partial order is defined over rules. Hence, the same argument as in
the comparison with Brewka is applied. Moreover, Brewka and Eiter [8] define a preferred
answer sets fdiully prioritized programs. For instance, consider the program

ri: a < c,notb,
r2: b <d,nota,
r3: ¢ <notd,

10priorities with preconditions, which is presented in an example of [7], is also encoded in PLP using the
technique of Section 2.3.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 215
r4: d < notc,

with the priorityr» < r1 (r1 is preferred over;). In this case, they consider a total-order
over rules which is compatible withp < 1 (called full prioritization). Their preferred
answer set then becomés c} if r4 < r3 <rp < r1 for instance, while it become®, d}

if o <r1 <r3 <r4. On the other hand, in PLP the p-answer set is selected according
to the existing priorityr2 < r1. In the above program, using the transformation for rule
prioritization in Section 2.3, the PLP expression of the above program becomes

IT: a < c,noth, ri < c,notb,
b <d,nota, ro < d, nota,
¢ < notd,

d < notc,

D rp <ri.

Then, (11, @) has the unique p-answer det ¢, r1} which corresponds tfu, c}.

Generally, in [8] the absence of priority between ruleandr; implies two possibilities
ri < r; andr; <r;, which are independent of the existing priorities. On the other hand,
in PLP the existing priorities dominate the selection of p-answer sets, and the absence
of priorities means a selection which may vary according to the existing priorities. In
the above programy;; has a priority overn, then an answer set which includesis
selected as the unique p-answer set (and consequenily,preferred overs). If one
desires to consider two possibilities of the preference betwseandr, independent of the
existingrz < r1, itis done in PLP by explicitly specifying symmetric priorities=< r4 and
rqa Xrs3.

Language Their preferred answer set semantics is defined for ELPs which are a strict
subclass of GEDPs.

Commonsense reasoningheir primary concern is to resolve conflicting multiple
answer sets and no application to other nonmonotonic formalisms is presented.

There are some other important differences between [8] and ours.

Monotonicity versus Nonmonotonicitfheir framework is monotonic with respect to
the introduction of preference information. That is, introducing priorities monotonically
reduces the number of answer sets. This means that once some conclusion is believed
by the current preference knowledge, there is no way to invalidate the conclusion by
introducing new preference knowledge. By contrast, in PLP adding preference information
may nonmonotonically revise the previous beliefs (Proposition 2.2).

Preference information is possibly incomplete. Then, the p-answer sets select answer
sets according to the priorities availabledn However, the selection might change by
the introduction of new preference information. Such a change often happens in the real
life. For example, we make a plan to manage daily jobs according to their priorities, while
we are obliged to change the plan when an urgent job (with the highest priority) comes
up. Thus, we consider the nonmonotonic aspect of prioritized reasoning is important and
useful in commonsense reasoning.

216 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

Principles of prioritized reasonindgrewka and Eiter also introduce general principles
for priorities as follows.

Principle I. Let By and B2 be two belief sets of a prioritized theo(¥', <) generated by
the set of (ground) rule® U {d1} and R U {d2}, whered1, d> ¢ R, respectively. Ifd1 is
preferred ovetl,, thenB; is not a (maximally) preferred belief set &t

Principle Il. Let B be a preferred belief set of a prioritized thedfy; <) andr a (ground)
rule such that at least one prerequisite- @ not in B. ThenB is a preferred belief set of
(T U{r}, <) whenever<’ agrees with< on priorities among rules iffr.

In the above, belief sets corresponds to answer sets in our context, and a prerequisite
means a literal (without NAF) in the body of a rule. Roughly speaking, the first principle
means that a belief set is preferred if it is generated by a rule with a relatively higher
priority. The second principle says that adding a rule which is not applicable in a preferred
belief set never changes this preference as far as the preference over old knowledge is kept.

Our p-answer sets satisfy Principle I. That is, if answer Sgtand S are respectively
produced by rules; andr,, and the priorityrp < r1 is given, thensSy is preferred taS2 as
presented in Section 3.2.2. However, p-answer sets do not satisfy Principle Il in general.
Take for instance, the following programfrom [8]:

r1: b <a,not=b,
ro: —a < Nnota,
r3: a < Nnot—a,

wherer; is preferred overy, andr; is preferred overs. The program has two answer
setsS1 = {—a} and Sz = {a, b}. Regarding Principle 1151 is the preferred answer set of
{r2, r3}, then adding-1, whose prerequisite is not satisfied byS;, should be ignored
in selecting preferred answer sets regardless of the priority10As a result, Brewka
and Eiter selectS; as the preferred answer set Bf On the other hand, in PLP using
the program transformation in Section 2.3, the p-answer set bedames1, r3}, which
corresponds t@».

In contrast to Brewka and Eiter’s Principle Il, our selectiorsgfs explained as follows.
S> is the preferred answer set pfi, r3}. By addingr; to {r1, r3}, we keepS, as the p-
answer set ofr1, 2, r3}. That is,the introduction ofr>, whose priority is lower thamy,
does not affect the consequencer-pfBrewka and Eiter’s preferred answer sets do not
satisfy this property.

Hence, we consider that Brewka and Eiter’s Principle Il is optional, and the utility of the
property would depend on applications.

5.1.4. Wang et al.

Wang et al. [56] introduceriority logic having the following feature.

Priority: A priority constraint, which is not necessarily a partial order, is defined over
rules.

Language They consider rules of the form <— a1, ..., a;, Whereg ande; are first-
order formulas. The meaning of a program is defined by stable arguments.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 217

Commonsense reasonin@Propositional) default theories and defeasible inheritance
networks are represented by priority logic.

Their claim is that nonmonotonic reasoning is replaced by monotonic inference plus
priority constraints. This view is interesting, but it is not clear how general this replacement
is possible. According to [31], priority logic and Reiter’'s default logic have the same
expressive power. From the complexity viewpoint, PLP is more expressive than default
logic (Section 4.2), thereby more expressive than priority logic.

5.1.5. Zang and Foo

Zang and Foo [57] introduce yet another “PLP”, which is close to [8].

Priority: A strict partial order is defined over rules.

LanguagePreferred answer sets are introduced for ELPs.

Commonsense reasoningheir prioritized logic programs are devised to resolve
conflicting multiple answer sets. Its application to program update is presented in [58],
while no explicit connection to other nonmonotonic formalism is presented.

Zang and Foo also introduce the frameworkdyhamic preferencdike [7], which
enables a programmer to dynamically specify preference information in a program.

5.1.6. Buccafurri et al.

Buccafurri et al. introduce a language call@idjunctive ordered logi¢DOL). In [10]
the authors introduce another language called DLP

Priority: A strict partial order is defined over (sets) of rules.

Language Each language handles extended disjunctive programs (DOL includes no
NAF). DLP= extends the answer set semantics, while DOL considers a different semantics.
Commonsense reasonirigOL realizes defeasible reasoning by preferring more specific

rules, and DLP effectively realizes inheritance.

The above two languages introduce priorities to disjunctive logic programs, but the
purpose is different from PLP. DOL and DERntroduce priorities to resolve conflicts in
default reasoning, while PLP introduces priorities to reduce non-determinism which arises
in disjunctive logic programs. From the complexity viewpoint, DOL and Dl&e at the
same complexity level as disjunctive logic programming, which is in contrast to PLP.

5.1.7. Others

Priority: Priorities are defined over (conflicting) default rules [1,13,21,24] and (sets of)
atoms [45]. In [25] priorities with preconditions are used.

LanguageExtended logic programs [1,13,21,24] and Datalog with integrity constraints
[45], which are all strict subclasses of GEDPs. In [25] constraint (definite) logic programs
are considered.

Commonsense reasoningnalyti and Pramanik [1] introduce priorities to resolve
contradiction in a program. Dimopoulos and Kakas [13] replace NAF by prioritized
reasoning, and apply their method to temporal reasoning. Gelfond and Son [21] introduce
meta-level axioms for prioritized defeasible reasoning. Pradhan and Minker [45] and
Grosof [24] use priorities for combining conflicting knowledge bases of multi-agents.
These work introduce priorities to select intended conclusions from conflicting knowledge.
By contrast, PLP is used for not only resolving confliction, but reducing various kinds

218 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

of non-determinism in logic programming and realizing various forms of commonsense
reasoning. Govindarajan et al. [25] use priority knowledge to select best solutions in the
context of constraint logic programming.

5.1.8. Rule-based versus Literal-based

As presented above, most prioritized LP-languages introduce priorities between rules. It
is in contrast to PLP in which priorities are specified over literals and NAF-formulas. We
discussed in Sections 2.3 and 3.2.2 how to express priorities between (default) rules in PLP.
Thus, PLP can simulate reasoning with prioritized rules. On the other hand, it is unknown
how to specify priorities over disjunctive or abductive knowledge in terms of languages
with rule-based preference.

5.2. Commonsense reasoning

PLP can realize abduction, default reasoning, circumscription, and their prioritized
versions. We compare our PLP methods with the existing frameworks for (prioritized)
commonsense reasoning in Al.

5.2.1. (Prioritized) abduction

Minimal explanations are usually computed by comparing generated explanations. In the
context of abductive logic programming, minimal explanations are computed by selecting
A-minimal answer sets of a GEDP (Lemma 3.1). On the other hand, PLP encodes the
selection of minimal explanations in the language using the prioitigs. 11 Moreover,
PLP can specify further preference over minimal explanations as in Section 3.1.2.
Eiter and Gottlob [14] introduce priorities to abduction. In their framework, the set of
abducibles are partitioned into levels of priorities and explanations containing the most
preferable hypotheses are selected. Such a hierarchical structure is easily expressed in our
prioritized abduction. However, the converse translation, representing arbitrary priorities
over abducibles in a single abducible hierarchy is generally impossible.

5.2.2. (Prioritized) default reasoning

There are several systems which incorporate priorities into default reasoning. For
instance, Baader and Hollunder [3], Brewka [6], Delgrande and Schaub [12], and Rintanen
[50] introduce a strict partial/total order over (normal) defaults, these formalisms specify
the order of default applications in constructing default extensions. Our approach is
a bit different from them in the sense that we compare preference between extension
bases, rather than specifying the order of rule applications in the process of computation.
Resolving conflicting defaults has been discussed by several researchers in the context
of extended logic programs [28,34,43]. These approaches use program transformations
to resolve contradiction in a program. By contrast, PLP expresses priorities over defaults
outside a program, which enables us to specify priorities independent of a program.

11Eiter et al. [16] present an algorithm of computing minimal explanations in (function-free) definite logic
programs via answer sets of disjunctive logic programs.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 219

5.2.3. (Prioritized) circumscription

Several researchers propose methods for compiling (prioritized) circumscription into
logic programs. Gelfond and Lifschitz [18] provide a method of compiling prioritized
circumscription into stratified logic programs. In their framework, however, every clause is
assumed to contain at most one variable predicate and no fixed predicate. Moreover, they
do not transform any clause having more than one disjunct included in the same strata nor
any negative clause in first-order theories. By contrast, the PLP expression of prioritized
circumscription presented in this paper has no such restriction. Sakama and Inoue [52]
present another transformation from circumscription to a GEDP. The transformation is
not necessarily done in polynomial-time as it requires the computaticharficteristic
clauses[27]. The transformation of [52] is extended to prioritized circumscription by
several researchers [11,55], but it still requires the computation of characteristic clauses.

5.2.4. PLP versus NMR

We have presented methods of realizing (prioritized) commonsense reasoning in terms
of PLP. On the other hand, it is unknown how to express PLP in terms of the existing
frameworks of nonmonotonic reasoning in general. For instance, a predicate hierarchy in
prioritized circumscription is expressed by a set of priorities in a PLP, but the converse
translation, representing a set of priorities with a pre-order priority relation in a single
predicate hierarchy, is generally impossiBfeErom the complexity viewpoint, expressing
PLPs in terms of existing major nonmonotonic logics, which are at the second level of the
polynomial hierarchy [22,31], is most unlikely possible.

6. Concluding remarks

Prioritized logic programming realizes reasoning with priorities, which is useful for
reducing non-determinism in logic programming. PLP can specify preference knowledge
separate from programming knowledge. This means that a control part which determines
strategies for problem-solving is separated from a logic part which specifies a declarative
background knowledge. Such a separation accords with Kowalski’s principle of logic
programming [33]. We introduced PLP under the answer set semantics, while an analogous
mechanism is easily devised for other semantics of logic programming.

From the Al side, PLP can express various forms of commonsense reasoning in the
single language. This is meaningful for comparing commonsense reasoning in different
languages and for better understanding the nature of priorities in each reasoning. Moreover,
such characterization exploits strong links between logic programming and commonsense
reasoning in Al.

Currently, PLP has no efficient implementation. The selection algorithm introduced in
Section 4.1 requires computation of every answer set in advance. On the other hand,
translating PLPs to some existing LP language would provide an immediate way of
implementing PLP. Some hints might be in studies like [12] which presents a method

12 Grosof [23] introduced a generalized circumscription having pre-order priority relations over first-order
predicates.

220 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

of embedding priorities into default theories. However, it is unlikely that PLPs can
be efficiently translated into existing LP languages in general. This is because the
computational complexity of PLP is at the third level of the polynomial hierarchy, while
the complexities of most existing LP languages lie within the second level. The complexity
result Corollary 4.7 suggests the existence of a polynomial-time transformation from non-
disjunctive PLPs to disjunctive LPs. However, it is at present an open question whether
there exists a modular transformation for this purpose.

There are several directions for future research. The present PLP framework specifies
priorities outside a program. Extending the language to be able to specify dynamic
priorities inside a program will increase the utility of PLP. Examples of this direction are
in [7,57]. In this paper, we considered a problem setting such that priorities are given in
advance. On the other hand, Inoue and Sakama [30] introduce a framewmd{etnce
abductionin which preference information is abduced by an observation. Thus, preference
abduction is used for revising a PLP; when new information arrives at a PLP, preference
abduction can produce new priorities.

Commonsense (honmonotonic) reasoning and reasoning with priorities are closely
related. Shoham [51] argues that the non-standard behavior of nonmonotonic reasoning is
due to preference mechanisms within it. According to Shoham, “nonmonotonic logics are
the result of associating a standard logic with a preference relation on models”. Examples
of research along this line are [9,13,56]. Using the program transformation from a GEDP to
a positive disjunctive program (plus integrity constraints) in [26], PLP is also expressed in
terms of a monotonic positive disjunctive program plus priorities. However, it is not clear
whether such a translation, from nonmonotonic logics to monotonic logics plus priorities,
is generally possible or not. The general correspondence between nonmonotonic reasoning
and prioritized reasoning is a challenging topic.

Acknowledgements

The authors thank Thomas Eiter for useful discussion on the subject of this paper. We
also thank anonymous referees for comments on an earlier draft of this paper.

References

[1] A. Analyti, S. Pramanik, Reliable semantics for extended logic programs with rule prioritization, J. Logic
Comput. 5 (3) (1995) 303-324.

[2] K.R. Apt, H.A. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.),
Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, CA, 1988,
pp. 89-148.

[3] F. Baader, B. Hollunder, Priorities on defaults with prerequisites, and their application in treating specificity
in terminological default logic, J. Automat. Reason. 15 (1995) 41-68.

[4] C. Baral, M. Gelfond, Logic programming and knowledge representation, J. Logic Programming 19-20
(1994) 73-148.

[5] G. Bossu, P. Siegel, Saturation, nonmonotonic reasoning and the closed world assumption, Atrtificial
Intelligence 25 (1995) 13-63.

[6] G. Brewka, Reasoning about priorities in default logic, in: AAAI-94, Seattle, WA, MIT Press, Cambridge,
MA, 1994, pp. 940-945.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222 221

[7] G. Brewka, Well-founded semantics for extended logic programs with dynamic preferences, J. Atrtificial
Intelligence Res. 4 (1996) 19-36.

[8] G. Brewka, T. Eiter, Preferred answer sets for extended logic programs, Artificial Intelligence 109 (1999)
297-356.

[9] F. Buccafurri, N. Leone, P. Rullo, Semantics and expressiveness of disjunctive ordered logic, Ann. Math.
Artificial Intelligence 25 (1999) 311-337.

[10] F. Buccafurri, W. Faber, N. Leone, Disjunctive logic programs with inheritance, in: Proc. 1999 International
Conference on Logic Programming, MIT Press, Cambridge, MA, 1999, pp. 79-93.

[11] J. Chen, Embedding prioritized circumscription in logic programs, in: Proc. 10th International Symposium
on Foundations of Intelligent Systems (ISMIS-97), Lecture Notes in Artificial Intelligence, Vol. 1325,
Springer, Berlin, 1997, pp. 50-59.

[12] J. Delgrande, T. Schaub, Compiling reasoning with and about preference into default logic, in: Proc. IJCAI-
97, Nagoya, Japan, Morgan Kaufmann, Los Altos, CA, 1997, pp. 168-174.

[13] Y. Dimopoulos, A.C. Kakas, Logic programming without negation as failure, in: Proc. 1995 International
Logic Programming Symposium, MIT Press, Cambridge, MA, 1995, pp. 369-383.

[14] T. Eiter, G. Gottlob, The complexity of logic-based abduction, J. ACM 42 (1995) 3-42.

[15] T. Eiter, G. Gottlob, N. Leone, Abduction from logic programs: Semantics and complexity, Theoret.
Comput. Sci. 189 (1-2) (1997) 129-177.

[16] T. Eiter, W. Faber, N. Leone, G. Pfeifer, The diagnosis front-end of the dlv system, Al Comm. 12 (1999)
99-111.

[17] D.W. Etherington, Formalizing nonmonotonic reasoning systems, Artificial Intelligence 31 (1987) 41-85.

[18] M. Gelfond, V. Lifschitz, Compiling circumscriptive theories into logic programs, in: Proc. AAAI-88, St.
Paul, MN, MIT Press, Cambridge, MA, 1988, pp. 455-459.

[19] M. Gelfond, Epistemic approach to formalization of commonsense reasoning, Technical Report TR-91-2,
University of Texas at El Paso, TX, 1991.

[20] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation
Comput. 9 (3,4) (1991) 365-385.

[21] M. Gelfond, T.C. Son, Reasoning with prioritized defaults, in: Proc. 3rd International Workshop on Logic
Programming and Knowledge Representation, Lecture Notes in Atrtificial Intelligence, Vol. 1471, Springer,
Berlin, 1998, pp. 164-223.

[22] G. Gottlob, Complexity results for nonmonotonic logics, J. Logic Comput. 2 (3) (1992) 397-425.

[23] B.N. Grosof, Generalizing prioritization, in: Proc. 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR-91), Cambridge, MA, Morgan Kaufmann, Los Altos, CA, 1991,
pp. 289-300.

[24] B.N. Grosof, Prioritized conflict handling for logic programs, in: Proc. 1997 International Logic
Programming Symposium, MIT Press, Cambridge, MA, 1997, pp. 197-211.

[25] K. Govindarajan, B. Jayaraman, S. Mantha, Preference logic programming, in: Proc. 12th International
Conference on Logic Programming, MIT Press, Cambridge, MA, 1995, pp. 731-745.

[26] K. Inoue, C. Sakama, Negation as failure in the head, J. Logic Program. 35 (1) (1998) 39-78. A shorter
version: On positive occurrences of negation as failure, in: Proc. 4th International Conference on Principles
of Knowledge Representation and Reasoning (KR-94), Bonn, Germany, Morgan Kaufmann, Los Altos, CA,
1994, pp. 293-304.

[27] K. Inoue, Linear resolution for consequence finding, Atrtificial Intelligence 56 (1992) 301-353.

[28] K. Inoue, Hypothetical reasoning in logic programs, J. Logic Programming 18 (3) (1994) 191-227.

[29] K. Inoue, C. Sakama, A fixpoint characterization of abductive logic programs, J. Logic Programming 27 (2)
(1996) 107-136. A shorter version: Transforming abductive logic programs to disjunctive programs, in:
Proc. 10th International Conference on Logic Programming, MIT Press, Cambridge, MA, 1993, pp. 335—
353.

[30] K. Inoue, C. Sakama, Abducing priorities to derive intended conclusions, in: Proc. IJCAI-99, Stockholm,
Sweden, Morgan Kaufmann, Los Altos, CA, 1999, pp. 44-49.

[31] T. Janhunen, On the intertranslatability of autoepistemic, default and priority logics, and parallel
circumscription, in: Proc. European Workshop on Logics in Artificial Intelligence (JELIA-98), Lecture
Notes in Atrtificial Intelligence, Vol. 1489, Springer, Berlin, 1998, pp. 216-232.

[32] A.C. Kakas, R.A. Kowalski, F. Toni, Abductive logic programming, J. Logic Comput. 2 (1992) 719-770.

222 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185-222

[33] R.A. Kowalski, Algorithm = Logic + Control, Comm. ACM 22 (1979) 424-435.

[34] R.A. Kowalski, F. Sadri, Logic programs with exception, New Generation Comput. 9 (3, 4) (1991) 387-400.

[35] V. Lifschitz, Computing circumscription, in: Proc. IJCAI-85, Los Angeles, CA, Morgan Kaufmann, Los
Altos, CA, 1985, pp. 121-127.

[36] V. Lifschitz, On the satisfiability of circumscription, Artificial Intelligence 28 (1986) 17-27.

[37] V. Lifschitz, T.Y.C. Woo, Answer sets in general nonmonotonic reasoning (preliminary report), in: Proc. 3rd
International Conference on Principles of Knowledge Representation and Reasoning (KR-92), Cambridge,
MA, Morgan Kaufmann, Los Altos, CA, 1992, pp. 603-614.

[38] V. Lifschitz, Minimal belief and negation as failure, Atrtificial Intelligence 70 (1994) 53-72.

[39] V. Lifschitz, Circumscription, in: D.M. Gabbay et al. (Eds.), Handbook of Logic in Artificial Intelligence
and Logic Programming, Vol. 3, Clarendon Press, Oxford, 1994, pp. 297-352.

[40] J.W. Lloyd, Foundations of Logic Programming, 2nd edn., Springer, Berlin, 1987.

[41] J. Lobo, J. Minker, A. Rajasekar, Foundations of Disjunctive Logic Programming, MIT Press, Cambridge,
MA, 1992.

[42] J. McCarthy, Circumscription—A form of nonmonotonic reasoning, Artificial Intelligence 13 (1980) 27-39.

[43] L.M. Pereira, J.J. Alferes, N. Aparicio, Contradiction removal within well-founded semantics, in: Proc.
1st International Workshop on Logic Programming and Nonmonotonic Reasoning, MIT Press, Cambridge,
MA, 1991, pp. 105-119.

[44] D. Poole, A logical framework for default reasoning, Artificial Intelligence 36 (1) (1988) 27-47.

[45] S. Pradhan, J. Minker, Using priorities to combine knowledge bases, J. Intelligent and Cooperative
Information Systems 5 (2, 3) (1996) 333-364.

[46] T.C. Przymusinski, On the declarative semantics of deductive databases and logic programs, in: J. Minker
(Ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, CA,
1988, pp. 193-216.

[47] T.C. Przymusinski, Stable semantics for disjunctive programs, New Generation Comput. 9 (3, 4) (1991)
401-424.

[48] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81-132.

[49] R. Reiter, G. Criscuolo, On interacting defaults, in: Proc. IJCAI-81, Vancouver, BC, Morgan Kaufmann,
Los Altos, CA, 1981, pp. 270-276.

[50] J. Rintanen, Lexicographic priorities in default logic, Artificial Intelligence 106 (1998) 221-265.

[51] Y. Shoham, Nonmonotonic logics: Meaning and utility, in: Proc. IJCAI-87, Milan, Italy, Morgan Kaufmann,
Los Altos, CA, 1987, pp. 388-393.

[52] C. Sakama, K. Inoue, Embedding circumscriptive theories in general disjunctive programs, in: Proc. 3rd
International Conference on Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Atrtificial
Intelligence, Vol. 928, Springer, Berlin, 1995, pp. 344-357.

[53] C. Sakama, K. Inoue, Representing priorities in logic programs, in: Proc. 1996 Joint International
Conference and Symposium on Logic Programming, MIT Press, Cambridge, MA, 1996, pp. 82-96.

[54] M.E. Stickel, Rationale and methods for abductive reasoning in natural-language interpretation, in: Proc.
International Scientific Symposium on Natural Language and Logic, Lecture Notes in Artificial Intelligence,
\ol. 459, Springer, Berlin, 1989, pp. 233-252.

[55] T. Wakaki, K. Satoh, Compiling prioritized circumscription into extended logic programs, in: Proc. IJCAI-
97, Nagoya, Japan, Morgan Kaufmann, Los Altos, CA, 1997, pp. 182-187.

[56] X.Wang, J.-H. You, L.-Y. Yuan, Nonmonotonic reasoning by monotonic inferences with priority constraints,
in: Proc. 2nd International Workshop on Nonmonotonic Extensions of Logic Programming, Lecture Notes
in Artificial Intelligence, Vol. 1216, Springer, Berlin, 1996, pp. 91-109.

[57] Y. Zang, N. Foo, Answer sets for prioritized logic programs, in: Proc. 1997 International Logic Symposium,
MIT Press, Cambridge, MA, 1997, pp. 69-83.

[58] Y. Zang, N. Foo, Updating logic programs, in: Proc. 13th European Conference on Atrtificial Intelligence,
Wiley, Chichester, UK, 1998, pp. 403-407.

