
Artificial Intelligence 123 (2000) 185–222

Prioritized logic programming and
its application to commonsense reasoning

Chiaki Sakamaa,∗, Katsumi Inoueb
a Department of Computer and Communication Sciences, Wakayama University, Sakaedani,

Wakayama 640 8510, Japan
b Department of Electrical and Electronics Engineering, Kobe University, Rokkodai, Nada-ku,

Kobe 657 8501, Japan

Received 29 December 1999

Abstract

Representing and reasoning with priorities are important in commonsense reasoning. This paper
introduces a framework ofprioritized logic programming(PLP), which has a mechanism of explicit
representation of priority information in a program. When a program contains incomplete or
indefinite information, PLP is useful for specifying preference to reduce non-determinism in logic
programming. Moreover, PLP can realize various forms of commonsense reasoning in AI such as
abduction, default reasoning, circumscription, and their prioritized variants. The proposed framework
increases the expressive power of logic programming and exploits new applications in knowledge
representation. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Prioritized logic programs; Abduction; Default reasoning; Prioritized circumscription

1. Introduction

In commonsense reasoning a theory is usually assumed incomplete and may contain
indefinite or conflicting knowledge. Under such circumstances, priority information is
useful to select appropriate knowledge in an incomplete theory and guides us to intended
conclusions. For representing and reasoning with priorities, several prioritized systems
have been proposed in the field ofnonmonotonic reasoning(NMR) in AI.

In default logic[48], conflicting default rules produce multiple extensions. Then more
specific default rules are preferred to reduce anomalous extensions. Such preference

* Corresponding author.
E-mail addresses:sakama@sys.wakayama-u.ac.jp (C. Sakama), inoue@eedept.kobe-u.ac.jp (K. Inoue).

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00054-0

186 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

knowledge is implicitly encoded in default rules [17,49], or explicitly specified as priorities
between default rules [3,6,12,50]. On the other hand,circumscription [42] introduces
preference over models. A minimal model which consists of minimal possible extensions
of predicates is selected as a preferred model. Further preference between predicates is
specified inprioritized circumscription[35]. In abduction, an observation has more than
one explanation in general. To select preferred explanations from many candidates, the
simplicity measure is usually adopted as well as other syntactic or semantic criteria [14,
54].

Logic programmingprovides a powerful language for representing and reasoning
with commonsense knowledge [4]. Various extensions of logic programming provide
mechanisms of handling incomplete and conflicting knowledge in many ways.Normal
logic programs[40] incorporatenegation as failureinto a program and realize default
reasoning.Disjunctive logic programs[41] introduce disjunctive rules in a program,
which enables us to reason with indefinite information.Extended logic programs[20]
distinguish default and explicit negation to represent incomplete information in a program.
Abductive logic programs[32] use hypothetical knowledge to realize abduction in logic
programming.

In these extended frameworks, each language introduces different kinds ofnon-
determinismas
• multiple minimal models in normal and disjunctive programs,
• multiple explanations in an abductive logic program,
• conflicting answer sets in an extended logic program.

To reduce such non-determinism in programming knowledge, it is useful to introduce a
mechanism of explicit representation of priorities to specify the intended meaning of a
program. The logic programming languages, however, provide a rather weak mechanism
of specifying priorities in a program. When a logic program contains non-Horn clauses, it
has multiple minimal models in general. Preference is then introduced to select intended
minimal models of a program. However, such preference is defined at the semantic
level, and a program itself does not have a mechanism of representing priorities at the
syntactic level.1 To reason with priorities in logic programming, several languages which
incorporate priorities into programs emerged quite recently [7–10,13,21,53,56,57].

This paper studies representing and reasoning with priorities in logic programming.
We first introduce a framework ofprioritized logic programming(PLP) which has a
mechanism of explicit representation of priorities in a program. The declarative semantics
of such programs is given by thepreferred answer sets, which incorporate priorities
into Gelfond and Lifschitz’s answer set semantics [20]. Next, we demonstrate that
various forms of commonsense reasoning in AI, such as abduction, default reasoning,
circumscription, and their prioritized versions, are realized in PLP. We analyze the
computational complexity of PLP, and show that the introduction of priorities increases
the expressive power of logic programming.

This paper is an extended form of [53]. The rest of this paper is organized as follows.
In Section 2, a framework of prioritized logic programming is introduced. Section 3
presents applications of PLP to commonsense reasoning in AI. Section 4 discusses the

1 Stratified negation [2,46] can express priorities between atoms in a restricted manner.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 187

computational aspect of PLP. Section 5 presents comparisons with related work, and
Section 6 concludes the paper.

2. Prioritized logic programs

2.1. General extended disjunctive programs

Logic programs we consider in this paper aregeneral extended disjunctive programs.
A general extended disjunctive program (GEDP) consists ofrulesof the form:

L1 | · · · | Lk | notLk+1 | · · · | notLl

← Ll+1, . . . ,Lm,notLm+1, . . . ,notLn (n>m> l > k > 0), (1)

where eachLi is a positive or negative literal. “|” represents a disjunction andnot means
negation as failure(NAF). The disjunction to the left of← is theheadand the conjunction
to the right of← is thebodyof the rule. A rule with the empty head is called anintegrity
constraint. A ground ruleis a rule having no variable. A rule with variables stands for the
set of its ground instances, i.e., the set of ground rules obtained by substituting variables
with elements of the Herbrand universe of a program in every possible way.

Intuitively, the rule (1) is read as: if allLl+1, . . . ,Lm are believed and allLm+1, . . . ,Ln
are disbelieved, then either someLi (16 i 6 k) should be believed or someLj (k + 16
j 6 l) should be disbelieved. The class of GEDPs is introduced in [26,37] as a subclass
of minimal belief and negation as failure(MBNF) [38]. GEDPs are a fairly general class
of existing LP languages in the sense that it includes the so-callednormal, disjunctive
andextended logic programs. Moreover, it can also express the class ofabductive logic
programs, which will be discussed in the next section. A GEDP is called anextended
disjunctive program(EDP) if it contains nonot in the head of any rule (i.e.,k = l). An EDP
is called anormal disjunctive program(NDP) if everyLi in the program is an atom; and an
EDP is called anextended logic program(ELP) if it contains no disjunction (l 6 1). We say
that a set of ground literalsS satisfiesa ground rule of the form (1) if{Ll+1, . . . ,Lm} ⊆ S
and{Lm+1, . . . ,Ln} ∩ S = ∅ imply either{L1, . . . ,Lk} ∩ S 6= ∅ or {Lk+1, . . . ,Ll} \ S 6= ∅.
Also, S satisfies the conjunctionL1, . . . ,Lm,notLm+1, . . . ,notLn if {L1, . . . ,Lm} ⊆ S
and{Lm+1, . . . ,Ln} ∩ S = ∅.

The semantics of GEDPs is given by theanswer sets. The following definition is due to
[26]. First, letP be anot-free GEDP (i.e.,k = l andm = n) andS ⊆ LP , whereLP is
the set of all ground literals in the language ofP . Then,S is ananswer setof P if S is a
minimal set satisfying the following two conditions:

(i) S satisfies every rule inP , i.e., for each ground rule

L1 | · · · | Ll← Ll+1, . . . ,Lm (l > 1)

fromP , {Ll+1, . . . ,Lm} ⊆ S impliesLi ∈ S for somei(16 i 6 l). In particular, for
each ground integrity constraint←L1, . . . ,Lm from P , {L1, . . . ,Lm} 6⊆ S holds;

(ii) If S contains a pair of complementary literalsL and¬L, thenS = LP .

188 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Secondly, given any GEDPP andS ⊆ LP , consider the not-free GEDPPS (called a
reduct) obtained as follows: a rule

L1 | · · · | Lk← Ll+1, . . . ,Lm

is in PS if there is a ground rule of the form (1) fromP such that

{Lk+1, . . . ,Ll} ⊆ S and {Lm+1, . . . ,Ln} ∩ S = ∅.
Then,S is ananswer setof P if S is an answer set ofPS . Every answer set of a GEDP
P satisfies every ground rule fromP [26]. An answer set isconsistentif it is not LP . The
answer setLP is saidcontradictory. A GEDP isconsistentif it has a consistent answer set;
otherwise, the program isinconsistent. An answer setS of a GEDPP is minimal if there
is no other answer setS′ of P such thatS′ ⊂ S. The set of all answer sets ofP is written
asASP .

The above definition of answer sets reduces to that of Gelfond and Lifschitz [20] in an
EDP. Note that every answer set of any EDP is minimal [20,37], but the minimality of
answer sets no longer holds for GEDPs. For example, suppose a program with the single
rule

L | notL←,
saying,L is true or not. Then, it has two answer sets{L} and∅.

2.2. Prioritized logic programs

Next we introduce a prioritization mechanism to a program. Given a GEDPP and the
set of ground literalsLP , we defineL∗P = LP ∪{notL: L ∈ LP }. Then a pre-order relation
�, which is reflexive and transitive, is defined onL∗P .

Definition 2.1 (Priorities). For any elementse1 ande2 from L∗P , if e1 � e2 then we say
thate2 has a higher priority thane1. e1≺ e2 stands fore1� e2 ande2 6� e1. The statement
e1 � e2 is called apriority. A relation over elements including variables is defined as
follows. For tuplesx andy of variables, the statementp1(x) � p2(y) stands for every
priority p1(s)� p2(t) for any instancess of x andt of y.

Note that if there is a prioritye1 ≺ e2, e1 ande2 do not have common instances. For
example, there is no priority likep(x, a)≺ p(b, y) becausep(b, a) 6≺ p(b, a).

Given a setΦ of priorities, we define the closureΦ∗ as the set of priorities which are
reflexively or transitively derived using priorities inΦ.

Definition 2.2 (Prioritized logic program). A prioritized logic program(PLP) is defined
as a pair(P,Φ) whereP is a GEDP andΦ is a set of priorities overL∗P . 2

2 We abuse the term PLP for representing both prioritized logicprogrammingand prioritized logicprogram.
For the latter case, it is used as a countable noun.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 189

The declarative semantics of a PLP is defined using answer sets. In what follows, for
any setsS ⊆ LP andT ⊆ LP , and for any ground literalL, L ∈ S \ T meansL ∈ S and
L /∈ T ; andnotL ∈ S \ T meansL /∈ S andL ∈ T .

Definition 2.3 (Preference between answer sets). Given a PLP(P,Φ), the relationv is
defined over the answer sets ofP as follows. For any answer setsS1, S2, andS3 of P ,

(i) S1v S1.
(ii) S1v S2 if

∃e2 ∈ S2 \ S1[∃e1 ∈ S1 \ S2 such that(e1� e2) ∈Φ∗
∧ ¬∃e3 ∈ S1 \ S2 such that(e2≺ e3) ∈Φ∗].

(iii) If S1v S2 andS2v S3, thenS1v S3.
We say thatS2 is preferableto S1 with respect toΦ if S1v S2 holds. We writeS1< S2 if
S1v S2 andS2 6v S1.

By the definition,S1v S2 holds iffS2\S1 has an elemente2 whose priority is higher than
some elemente1 in S1 \ S2, andS1 \ S2 does not have another elemente3 whose priority
is strictly higher thane2. In particular, the condition (¬∃e3 ∈ S1 \ S2 such that(e2 ≺ e3) ∈
Φ∗) of (ii) is automatically satisfied if there is no priority chained over more than two
different elements (i.e.,e1� e2� e3 implies eithere1= e2 or e2= e3).

Example 2.1. Let (P,Φ) be the PLP such that

P : p | q←,
q | r← .

Φ : p � q, q � r.
Then,{p, r} and{q} are two answer sets ofP , and{q} v {p, r}. Note that{p, r} 6v {q} by
the presence ofq � r in Φ.

Definition 2.4 (Preferred answer set). Let (P,Φ) be a PLP. Then, an answer setS of P is
called apreferred answer set(or p-answer set, for short) of(P,Φ) if S v S′ impliesS′ v S
(with respect toΦ) for any answer setS′ of P . The set of all p-answer sets of(P,Φ) is
written asPAS(P ,Φ).

Intuitively, the p-answer sets are answer sets including elements with the highest
priorities with respect toΦ. By the definition,(P,Φ) has a p-answer set ifP has a finite
number of answer sets.

A PLP and p-answer sets are useful when a program has multiple answer sets and
a reasoner wants to filter them out according to her preference. For instance, indefinite
information in a disjunctive logic program is reduced by the prioritization mechanism of
PLP.

190 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Example 2.2. Let P0 be the program

battery-dead| ignition-damaged← turn-key,¬start,

turn-key←,
¬start←,

where the first rule attributes the failure of starting a car to a battery or an ignition. Now a
reasoner empirically knows that an ignition causes a problem less frequently than a battery.
This situation is expressed by the priority

Φ : ignition-damaged� battery-dead.

Then, the p-answer set of(P0,Φ) becomesS = {turn-key,¬start,battery-dead}.
Note that the above situation is also expressed using negation as failure. Suppose the

programP1 which is obtained fromP0 by rewriting the first rule with

battery-dead← turn-key,¬start,not ignition-damaged.

Then,S becomes the answer set of the programP1. However, such a trick is not useful
in dynamically changing situations. Suppose that the reasoner later finds that the car-radio
works and there is the integrity constraint

IC: ← battery-dead, radio-work,

saying that a radio does not work with a dead battery. Let

P2= P1 ∪ {radio-work←}∪ {IC}.
Then it is impossible to get the alternative solutionignition-damagedfromP2. By contrast,
using PLP the p-answer set of

P3= P0 ∪ {radio-work←}∪ {IC}
becomes{turn-key,¬start, radio-work, ignition-damaged}, as intended.

Thus PLP can naturally specify prioritized knowledge, and can select appropriate answer
sets according to the change of situations. Note that any knowledge which is irrelevant to
preference is not affected by the selection of p-answer sets. For example, consider the
programP4 which is obtained fromP0 by replacing the first disjunctive rule with

battery-dead| ignition-damaged| cold-morning← turn-key,¬start,

wherecold-morninghas no priority over the other two disjuncts. Then,(P4,Φ) has the
p-answer set{turn-key,¬start,cold-morning} in addition toS.

2.3. Properties of PLP

The p-answer sets of PLPs extend the answer sets of GEDPs.

Proposition 2.1 (Relation between answer sets and p-answer sets).Let (P,Φ) be a PLP.
Then,PAS(P ,Φ) ⊆ASP . In particular,PAS(P ,∅) =ASP .

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 191

Thus, the answer sets of a program are characterized as a special case of the p-answer
sets of a PLP with empty priorities. It is also clear that if a programP has the unique
answer set, it also becomes the unique p-answer set of(P,Φ) for anyΦ.

The above proposition presents that introducing priorities reduces the number of possible
solutions in general. However, such reduction is not necessarily monotonic, i.e., increasing
priorities in a PLP does not always decrease the number of p-answer sets.

Proposition 2.2 (Nonmonotonicity).Let (P,Φ1) and (P,Φ2) be two PLPs. Then,Φ1 ⊆
Φ2 does not implyPAS(P ,Φ2) ⊆PAS(P ,Φ1).

Example 2.3. Let P be the program

p | q←,
q | r←,
← q, r,

andΦ1= ∅, Φ2= {p � q}, andΦ3= {p � q, q � r}. Then(P,Φ1) has the p-answer sets
{p, r} and{q}; (P,Φ2) has{q}; and(P,Φ3) has{p, r}.

As an example of the above program, consider the following situation. There are three
different medicinesp, q , andr. A patient has to take eitherp or q , and eitherq or r. Also,
it is known that takingq andr together causes side effects (hence they should not be taken
together). With the empty prioritiesΦ1, there are two possibilities of taking{p, r} or {q}.
If it is known that the medicineq is more effective thanp, she prefers taking{q} under the
priority Φ2. Later, the mediciner is known as the best one as inΦ3, then{p, r} is the best
choice.

In the above example,{q} is selected as far asΦ2 is concerned, while the selection
is changed when more informationΦ3 is available. Thus, p-answer sets characterize the
situation in which previous beliefs may possibly be rebutted according to the change of
priorities.

In PLPs priority relations are defined over elements fromL∗P , but they are used to
express priorities over more general forms of knowledge.
• Priorities between conjunctive knowledge:

Suppose that a priority relation exists between conjunctions of elements:

(e1, . . . , em)� (e′1, . . . , e′n)
(or sets of elements{e1, . . . , em} � {e′1, . . . , e′n}).

Then it is expressed in a PLP(P,Φ) by introducing the rules

e0← e1, . . . , em and e′0← e′1, . . . , e′n
to P with the newly introduced atomse0 ande′0, and the prioritye0� e′0 in Φ.
• Priorities between disjunctive knowledge:

Suppose that a priority relation exists between disjunctions of elements:

(e1 | · · · | em)� (e′1 | · · · | e′n).

192 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Then it is expressed in a PLP(P,Φ) by introducing the rules

e0← ei (for i = 1, . . . ,m) and e′0← e′j (for j = 1, . . . , n)

to P with the newly introduced atomse0 ande′0, and the prioritye0� e′0 in Φ.
• Priorities with preconditions:

Suppose that a priority relation holds under some conditionΓ :

(e1� e2)← Γ.

Then it is expressed in a PLP(P,Φ) by introducing the rules

e′1← e1,Γ and e′2← e2,Γ

to P with the newly introduced atomse′1 ande′2, and the prioritye′1� e′2 in Φ.
• Priorities between rules:

Suppose that a priority relation exists between (conflicting) rules inP :

(H1← B1)� (H2← B2).

Then it is expressed in a PLP(P,Φ) by introducing the rules

r1←B1 and r2←B2

to P with the newly introduced atomsr1 andr2, and the priorityr1� r2 in Φ.
We illustrate the above third and fourth cases using examples.

Example 2.4. A person drinks tea or coffee (tea| coffee←), but she prefers coffee to tea
when sleepy ((tea� coffee)← sleepy). Such a conditional priority can be encoded in a
PLP as follows. Assume that (sleepy←) holds. Then, the(P,Φ) with

P : tea| coffee←,
tea′ ← tea,sleepy,

coffee′ ← coffee,sleepy,

sleepy← .

Φ : tea′ � coffee′.

has the p-answer set{sleepy,coffee,coffee′}. Next, if it turns out that no coffee is available,
then the PLP(P ∪{¬coffee←},Φ) has the p-answer set{sleepy, tea, tea′,¬coffee}. Thus,
PLP chooses an appropriate answer set according to the change of situations.

Example 2.5. Let P be the program

innocent← not guilty,

guilty← not innocent.

If one is presumed innocent unless proven otherwise, the first rule is preferred to the second
one. The situation is expressed in the PLP(P,Φ) as

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 193

P : innocent← not guilty,

guilty← not innocent,

rinnocent← not guilty,

rguilty← not innocent.

Φ : rguilty� rinnocent.

Then,(P,Φ) has the p-answer set{innocent, rinnocent}, which corresponds to the solution
by the first rule.

As shown above, priorities between rules are expressed in terms of priorities between
atoms. However, this transformation does not work well when a program is inconsistent.

Example 2.6. Let P be the program

flies← bird,

¬flies← penguin,

bird← penguin,

penguin←,
which has the contradictory answer setLP . If the second more specific rule is preferred to
the first more general one, introducing the rules

rflies← bird,

r¬flies← penguin

and the priorityrflies� r¬flies is of no use. In fact, the transformed program also has the
answer setLP .

In the above example, the first rule is usually regarded as a defeasibledefault rule.
Specifying priorities between conflicting default rules will be discussed in Section 3.2.2.

3. Commonsense reasoning in PLP

In this section, we present applications of PLP to commonsense reasoning in AI.

3.1. Abduction

Abduction is inference to explanations and is realized byabductive logic programming.
We first review the framework of abductive logic programming in terms of GEDPs.

Definition 3.1 (Abductive logic program, [26]). LetP be a GEDP andA a set of literals
calledabducibles. Then, anabductive logic program(ALP) is represented as a GEDP

Π = P ∪ {A | notA←:A ∈A}. (2)

194 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

The setA is identified with the set of ground instances fromA, and any instance of an
element fromA is also called an abducible. LetΠ be an ALP andO a ground literal which
represents anobservation. 3 Then, a setE ⊆A is anexplanation4 of O in Π if there is a
consistent answer setS of Π such thatE = S ∩A andO ∈ S.
E is an explanation ofO in Π iff S is a consistent answer set ofΠ ∪ {← notO} such

thatE = S ∩A [26].
In the above definition, additional disjunctive rules in (2) mean that “an abducibleA is

assumed or not”. Then, with the constraint← notO asserting “O should hold”, an answer
set ofΠ ∪ {← notO} contains abducibles which constitute an explanation ofO .

Example 3.1. LetΠ be the program

wet-shoes←wet-grass,

wet-grass← rained,

wet-grass← sprinkler-on,

rained| not rained←,
sprinkler-on | not sprinkler-on←,

whererainedandsprinkler-onare abducibles. Then, given the observationO =wet-shoes,
the programΠ ∪ {← notO} has three answer sets

{wet-shoes,wet-grass, rained},
{wet-shoes,wet-grass,sprinkler-on},
{wet-shoes,wet-grass, rained,sprinkler-on},

which imply that{rained}, {sprinkler-on}, {rained,sprinkler-on} are the possible explana-
tions ofO .

3.1.1. Minimal abduction
In abduction, selectingbest explanationsfrom many candidate explanations is partic-

ularly important. In this respect,minimal explanations are usually preferred as simplest
hypotheses to explain an observation. An explanationE is minimal if no E′ ⊂ E is an
explanation. Such minimal abduction is expressed in PLP as follows.

Definition 3.2 (Minimal abduction). Given an ALPΠ and an observationO , minimal
abductionis defined as a PLP(Π,ΦMA) where

ΦMA= {A� notA: A ∈A}.

In ΦMA, the priorityA � notA is read as “A is less likely to happen”. This priority
condition has the effect of eliminating an abducibleA in each p-answer set whenever

3 Without loss of generality an observation is assumed to be a (non-abducible) ground literal [29].
4 Explanations considered here arecredulousor braveexplanations [15].

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 195

possible. An answer setS is calledA-minimal if there is no answer setS′ such that
S′ ∩A⊂ S ∩A. Then the following results hold.

Lemma 3.1 (Minimal explanation versusA-minimal answer set, [26]).LetΠ be an ALP
andO an observation. Then,O has a minimal explanationE in Π iff Π ∪ {← notO} has
a consistentA-minimal answer setS such thatE = S ∩A.

Theorem 3.2 (Minimal abduction in PLP).Let (Π,ΦMA) be a PLP representing minimal
abduction. Then, an observationO has a minimal explanationE in Π iff (Π ∪ {←
notO},ΦMA) has a consistent p-answer setS such thatE = S ∩A.

Proof. By Lemma 3.1, it is enough to show thatS is a consistentA-minimal answer set
ofΠ ∪ {← notO} iff S is a consistent p-answer set of(Π ∪ {← notO},ΦMA).

PutΠ ′ = Π ∪ {← notO} and letS be a consistent answer set ofΠ ′. Then,S is a
consistentA-minimal answer set ofΠ ′
iff for any consistent answer setT of Π ′, ∃A ∈ (S \ T) ∩A implies∃A′ ∈ (T \ S) ∩A,
because otherwiseT ∩A⊂ S ∩A
iff for any consistent answer setT ofΠ ′, ∃A ∈A such that(A ∈ S \ T andnotA ∈ T \ S)
implies∃A′ ∈A such that(A′ ∈ T \ S andnotA′ ∈ S \ T)
iff for any consistent answer setT of Π ′, S v T impliesT v S with respect toΦMA

iff S is a consistent p-answer set of(Π ′,ΦMA). 2
Example 3.2. In Example 3.1, letΦMA = {sprinkler-on� not sprinkler-on, rained�
not rained}. Then,(Π ∪ {← notO},ΦMA) has two p-answer sets{wet-shoes, wet-grass,
rained} and{wet-shoes, wet-grass, sprinkler-on}, which imply the minimal explanations
{rained} and{sprinkler-on}, respectively.

3.1.2. Prioritized abduction
Although minimal abduction reduces the number of possible explanations, it is not

strong enough to select intended explanations. In fact, an abductive logic program
generally has multiple minimal explanations. To specify further priorities between minimal
explanations, we apply the priority relation� to abducibles and apply the relationv to
explanations.

Definition 3.3 (Priority over abducibles). For any abduciblesA1 and A2 from A, if
A1 � A2 we say thatA2 has ahigher priority thanA1. Let ΦA be a set of priorities
over abducibles. For two setsE ⊆ A andF ⊆ A, E v F is defined as in Definition 2.3
with respect to the priorities inΦA.

Definition 3.4 (Preferred minimal explanation). Let Π be an ALP andΦA a set of
priorities over abducibles. Given an observationO , a minimal explanationE ofO is called
a preferred(minimal) explanationif E v F impliesF v E (with respect toΦA) for any
minimal explanationF of O .

196 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

By the definition, a minimal explanation is preferred if it contains an abducible with a
relatively higher priority than those in any other explanation. In particular, if an ALP has
the unique minimal explanation, it is always the preferred explanation.

Definition 3.5 (Prioritized minimal abduction). Let (Π,ΦMA) be a PLP representing
minimal abduction. Given a setΦA of priorities over abducibles,prioritized minimal
abductionis defined as a PLP(Π,ΦPMA) where

ΦPMA=ΦMA ∪ {notAi � notAj : (Aj �Ai) ∈ΦA}.
In the definition, the additional prioritynotAi � notAj is read “an abducibleAj is less

likely to happen thanAi ”. Introducing this priority toΦMA, any p-answer setS satisfying
‘notAj ’ is preferred. Thus, preferred minimal explanations are computed by prioritized
minimal abduction.

Theorem 3.3 (Preferred minimal explanation versus prioritized minimal abduction).Let
Π be an ALP,ΦA a set of priorities over abducibles, andO an observation. Then,E is a
preferred minimal explanation ofO iff (Π ∪ {← notO},ΦPMA) has a consistent p-answer
setS such thatE = S ∩A.

Proof. PutΠ ′ =Π ∪ {← notO}. Then,E is a preferred minimal explanation ofO
iff E is a minimal explanation ofO and for any minimal explanationF of O , E v F
impliesF vE (with respect toΦA)
iff S is a consistent p-answer set of(Π ′,ΦMA) with E = S ∩A (Theorem 3.2), and for
any consistent p-answer setT of (Π ′,ΦMA) with F = T ∩ A, S ∩ A v T ∩ A implies
T ∩Av S ∩A (with respect toΦA), henceS v T impliesT v S (with respect toΦPMA)
iff S is a consistent p-answer set of(Π ′,ΦPMA) with E = S ∩A. 2
Example 3.3. In Example 3.2 suppose that a reasoner does not use the sprinkler, hence a
good reason exists to prefer ‘not sprinkler-on’ to ‘ not rained’. The situation is represented
using the prioritized minimal abduction(Π,ΦPMA) whereΦPMA contains the priority

not rained� not sprinkler-on,

together with the priorities inΦMA. Then, the PLP(Π ∪ {← notO},ΦPMA) has the
unique p-answer set{wet-shoes, wet-grass, rained}, which implies the preferred minimal
explanation{rained}.
3.2. Default reasoning

3.2.1. Knowledge system
Default reasoning is a form of reasoning with incomplete information. Poole [44]

proposed a simple framework for default reasoning, which is reformulated by Inoue [28]
in the context of logic programming as follows.

A knowledge systemis defined as a pairK = (P,∆) where P and ∆ are EDPs
representingfactsanddefaults, respectively.5 A fact or default containing no variable is

5 Inoue in [28] introducesK with ELPsP and∆. Gelfond [19] introduces a similar system with EDPs.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 197

calledground. GivenK = (P,∆), anextension baseis defined as a consistent answer set
of P ∪D whereD is a maximal subset of the ground instances of elements from∆.

Example 3.4. LetK1= (P1,∆1) be the knowledge system such that

P1 : ¬flies(x)← penguin(x),

bird(x)← penguin(x),

bird(polly)←,
penguin(tweety)← .

∆1: flies(x)← bird(x).

ThenK1 has the unique extension baseS = {bird(polly), penguin(tweety),bird(tweety),
flies(polly), ¬flies(tweety)}. Note that the default rule in∆1 is applied forx = polly but
not forx = tweety, sinceP1 ∪ {flies(tweety)} is inconsistent.

In abduction, minimal hypotheses are preferred to explain an observation. By contrast,
in default reasoning hypotheses are assumed as many as possible unless they cause
contradiction.

To formulate default reasoning in PLP, we define the PLP expression of a knowledge
system.

Definition 3.6 (Knowledge system in PLP). Given a knowledge systemK = (P,∆), its
PLP expression(Π,ΦKS) is defined as follows.

(i) Any rule in P is included inΠ .
(ii) Any rule Head← Body in ∆ is transformed to the rules

Head← δ(x),Body, (3)

δ(x) | notδ(x)← (4)

in Π , wherex represents variables appearing in the rule, andδ(x) is a newly
introduced atom uniquely associated with each rule from∆.

(iii) For any δ(x) introduced above, the prioritynotδ(x)� δ(x) is inΦKS.

In the above transformation, the rule (4) says that the corresponding default rule (3) is
effective or not, and priorities inΦKS express that default rulesnormallyhold. In this way,
PLP can represent a knowledge system in a single programΠ together with prioritiesΦKS.

LetD be the set of ground instances of any atomδ(x) in Π . An answer setS is called
D-maximalif there is no answer setS′ such thatS ∩D ⊂ S′ ∩D. LetLK be the set of all
ground literals in the language ofK. Then the following results hold.

Lemma 3.4 (Extension base versusD-maximal answer set).Let K = (P,∆) be a
knowledge system andΠ the transformed program as above. IfS is a consistentD-
maximal answer set ofΠ , there is an extension baseT of K such thatT = S ∩ LK .
Conversely, ifT is an extension base ofK, there is a consistentD-maximal answer setS
ofΠ such thatS ∩LK = T .

198 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Proof. If S is a consistentD-maximal answer set ofΠ , S is a consistent answer set ofΠ
and for any consistent answer setS′ of Π , δ1 ∈ S′ \ S impliesδ2 ∈ S \ S′ for someδ2 ∈D,
because otherwiseS ∩D ⊂ S′ ∩D. Then, it holds thatT = S ∩LK is a consistent answer
set ofP ∪ D with someD ⊆ ∆, and for any consistent answer setT ′ of P ∪ D′ with
D′ ⊆∆, d ′ ∈D′ \D impliesd ∈D \D′ for some ground defaultsd andd ′. Hence,T is
a consistent answer set ofP ∪D whereD is a maximal subset of the ground instances of
elements from∆. The converse is shown in a similar manner.2
Theorem 3.5 (Extension base versus p-answer set).Let K = (P,∆) be a knowledge
system and(Π,ΦKS) its PLP expression. IfS is a consistent p-answer set of(Π,ΦKS),
there is an extension baseT ofK such thatT = S ∩LK . Conversely, ifT is an extension
base ofK, there is a consistent p-answer setS of (Π,ΦKS) such thatS ∩LK = T .

Proof. By Lemma 3.4, it is enough to show thatS is aD-maximal consistent answer set
ofΠ iff S is a consistent p-answer set of(Π,ΦKS).
S is aD-maximal consistent answer set ofΠ

iff S is a consistent answer set ofΠ and for any consistent answer setS′ of Π , δ1 ∈ S′ \ S
and (notδ1) ∈ S \ S′ imply δ2 ∈ S \ S′ and (notδ2) ∈ S′ \ S for any δ1, δ2 ∈ D. As
(notδ1 � δ1) ∈ ΦKS and(notδ2 � δ2) ∈ ΦKS, δ1 ∈ S′ \ S and(notδ1) ∈ S \ S′ iff S v S′;
andδ2 ∈ S \ S′ and(notδ2) ∈ S′ \ S iff S′ v S.

Thus,S is aD-maximal consistent answer set ofΠ
iff S is a consistent answer set ofΠ and for any consistent answer setS′ of Π , S v S′
impliesS′ v S with respect toΦKS

iff S is a consistent p-answer set of(Π,ΦKS). 2
Example 3.5. The knowledge systemK1 of Example 3.4 is expressed in the PLP(Π,ΦKS)

as

Π : ¬flies(x)← penguin(x),

bird(x)← penguin(x),

bird(polly)←,
penguin(tweety)←,
flies(x)← δ(x),bird(x),

δ(x) | not δ(x)← .

ΦKS: not δ(x)� δ(x).
Then (Π,ΦKS) has the unique p-answer set{bird(polly),penguin(tweety), bird(tweety),
flies(polly),¬flies(tweety), δ(polly)}, which corresponds to the extension baseS of K1.

3.2.2. Prioritized default reasoning
A default theory generally has multiple extensions and priorities are used for se-

lecting an intended one. In this section, we introduce priorities to default reasoning in
PLP.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 199

Example 3.6. LetK2= (P2,∆2) be the knowledge system such that

P2 : bird(x)← penguin(x),

bird(polly)←,
penguin(tweety)← .

∆2: flies(x)← bird(x),

¬flies(x)← penguin(x).

Compared with Example 3.4, the first rule inP1 is placed at∆2 as a default rule. ThenK2
has another extension baseS′ = {bird(polly),penguin(tweety),bird(tweety),flies(polly),
flies(tweety)}, in addition toS = {bird(polly),penguin(tweety),bird(tweety),flies(polly),
¬flies(tweety)}.

In Example 3.6 we want to preferS to S′ as in Example 3.4, becauseS is produced
by the default rule¬flies(x)← penguin(x) which presents an exception of the rule
flies(x) ← bird(x). To select the intended extension base, we need a mechanism of
specifying priorities between defaults.

To this end, we combine the technique of prioritization over rules presented in
Section 2.3 with the PLP(Π,ΦKS) in Section 3.2.1. For each default ruleHead← Bodyin
∆, its named ruleis defined asr(x)= (Head← Body) wherer(x) is an atom representing
the (default) name, and x represents variables appearing in the rule. A default rule
Head← Body is identified with its default name. The set of ground instances of default
names of all defaults in∆ is denoted byN(∆).

Definition 3.7 (Generating default). Let K = (P,∆) be a knowledge system. A ground
defaultr from ∆ is calledgeneratingin an extension baseS if S satisfies the body ofr.
The set of all default names such that the corresponding defaults from∆ are generating in
S is denoted byGD(S).

We introduce the priority relation� over default names.

Definition 3.8 (Priorities between default rules). For any default namesri and rj from
N(∆), if rj � ri we say that a default ruleri has ahigher priority thana default rulerj .

Intuitively, rj � ri means that the defaultri has the precedence over the defaultrj in the
generation of an extension base. Using the priority, we select an extension base which is
generated by default rules with relatively higher priorities.

Definition 3.9 (Preferred extension base). Let K = (P,∆) be a knowledge system and
ΦD a set of priorities over default names. For any extension basesS and T of K,
GD(T) v GD(S) is defined as in Definition 2.3 with respect to the priorities inΦD .
An extension baseS is called apreferred extension baseif GD(S) v GD(T) implies
GD(T)vGD(S) (with respect toΦD) for any extension baseT of K.

200 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Definition 3.10 (Prioritized knowledge system). Let (Π,ΦKS) be a PLP representing
a knowledge systemK = (P,∆). Given a setΦD of priorities over default names, a
prioritized knowledge systemis defined as a PLP(ΠR,ΦPKS) such that

ΠR =Π ∪R
whereR = {r← δ,Body| (Head← δ,Body) ∈Π andr = (Head← Body) ∈∆},

ΦPKS=ΦKS∪ΦD.
In the definition,R introduces rules which imply default names (cf. Section 2.3) andΦD

introduces priorities over defaults. We show that the PLP(ΠR,ΦPKS) realizes prioritized
default reasoning.

Lemma 3.6 (Prioritized knowledge system versus knowledge system).Let (ΠR,ΦPKS)

be a prioritized knowledge system. IfS is a p-answer set of(ΠR,ΦPKS), S \ N(∆) is a
p-answer set of(Π,ΦKS).

Proof. Priorities inΦD within ΦPKS do not relate to any priority inΦKS, and the priorities
in ΦD filter the p-answer sets of(Π,ΦKS) using default names derived by the rules in
R. Thus, if S is a p-answer set of(ΠR,ΦPKS), removing default names fromS makes
S \N(∆) a p-answer set of(Π,ΦKS). 2
Theorem 3.7 (Preferred extension base versus prioritized knowledge system).LetK =
(P,∆) be a knowledge system,ΦD a set of priorities over default names, and(ΠR,ΦPKS)

a prioritized knowledge system. IfS is a p-answer set of(ΠR,ΦPKS), there is a preferred
extension baseS′ of K (with respect toΦD) such thatS′ = S ∩ LK . Conversely, ifS′
is a preferred extension base ofK (with respect toΦD), there is a p-answer setS of
(ΠR,ΦPKS) such thatS ∩LK = S′.

Proof. Let S be a p-answer set of(ΠR,ΦPKS). AsS \N(∆) is a p-answer set of(Π,ΦKS)
(Lemma 3.6),S′ = S∩LK is an extension base ofK = (P,∆) (Theorem 3.5). LetT be any
answer set ofΠR such thatT \N(∆) is a p-answer set of(Π,ΦKS). Then,T ′ = T ∩LK is
also an extension base ofK = (P,∆). AsS is a p-answer set of(ΠR,ΦPKS), S v T implies
T v S with respect toΦPKS. SinceGD(S′) ⊆ S and GD(T ′) ⊆ T , GD(S′) v GD(T ′)
implies GD(T ′) v GD(S′) with respect toΦD . Hence,S′ is a preferred extension base
of K. The converse is shown in a similar manner.2
Example 3.7. The knowledge systemK2 of Example 3.6 is expressed in the PLP
(ΠR,ΦPKS) as

ΠR : bird(x)← penguin(x),

bird(polly)←,
penguin(tweety)←,
flies(x)← δ1(x),bird(x),

¬flies(x)← δ2(x),penguin(x),

r1(x)← δ1(x),bird(x),

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 201

r2(x)← δ2(x),penguin(x),

δ1(x) | not δ1(x)←,
δ2(x) | not δ2(x)← .

ΦPKS: not δ1(x)� δ1(x),not δ2(x)� δ2(x), r1(x)� r2(x).
Then,(ΠR,ΦPKS) has the unique p-answer set

{ bird(polly),penguin(tweety),bird(tweety),flies(polly),¬flies(tweety),

δ1(polly), δ2(polly), δ2(tweety), r1(polly), r2(tweety)},
which corresponds to the intended extension base.

3.3. Circumscription

3.3.1. Parallel circumscription
In this section we consider realizingcircumscription in PLP. We first review the

framework of circumscription from [39].
Given a first-order theoryT , let P andZ be disjoint tuples of predicates fromT . Then

(parallel) circumscriptionof P in T with variableZ is defined as the second-order formula

Circ(T ;P ;Z)= T (P,Z)∧¬∃P ′Z′ (T (P ′,Z′)∧ P ′ <P),
whereT (P,Z) is a theory containing predicate constantsP , Z, andP ′, Z′ are tuples of
predicate variables that have the same arities as those predicates inP , Z. The set of all
predicates other thanP , Z from T is denoted byQ. The predicates inQ are called the
fixedpredicates.

For a structureM, let |M| be its universe andM[[C]] the interpretations of all individual,
function, and predicate constantsC in the language. For any two structuresM1 andM2,
M1�M2 iff

(i) |M1| = |M2|,
(ii) M1[[Q]] =M2[[Q]],
(iii) M1[[P]] ⊂M2[[P]].

A modelM of T is a model ofCirc(T ;P ;Z) iff there is no modelN of T such that
N �M.

To realize circumscription in the context of logic programming, we assume a first-order
theoryT as a set ofclausesof the form:

A1∨ · · · ∨Al ∨¬B1∨ · · · ∨ ¬Bm, (5)

where eachAi(16 i 6 l; l > 0) andBj (16 j 6m;m> 0) are atoms. Also, we consider
the Herbrand modelof T , which has the effect of introducing both thedomain closure
assumptionand theunique name assumptioninto T [5,40]. Now the PLP expression of
circumscription is defined as follows.

Definition 3.11 (Circumscription in PLP). Given a circumscriptionCirc(T ;P ;Z), its PLP
expression(Π,ΦCIRC) is defined as follows.

(i) For any clause (5) inT ,Π has the rule

A1 | · · · |Al←B1, . . . ,Bm.

202 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

(ii) For any fixed or variable predicateλ in T ,Π has the rule

λ(x) | notλ(x)← .

(iii) Priorities are given as

ΦCIRC = {pi(x)� notpi(x): pi ∈ Pi (i = 1, . . . , k)}
∪ {q(x)� notq(x),notq(x)� q(x): q ∈Q}.

Here,x is a tuple of variables in each predicate.

In the transformation, minimizing extensions of predicates fromP is expressed by the
priority pi(x)� notpi(x) in ΦCIRC. On the other hand, each atom with a fixed or variable
predicate is either true or not, and it is expressed by the second disjunctive rule. In this
case, extensions of variable predicates can be varied, while those of fixed predicates are
not affected by priorities over minimized predicates. This situation is expressed by the
symmetric prioritiesq(x)� notq(x) andnotq(x)� q(x) in ΦCIRC.

With this setting, circumscription is expressed in terms of PLP. In the following,p is also
used to represent an atom with a minimized predicate fromP , andq an atom with a fixed
predicate. Also,P , Z, Q are used to represent the sets of atoms with the corresponding
predicates.

Theorem 3.8 (Circumscription versus p-answer set).Let Circ(T ;P ;Z) be a circumscrip-
tion and(Π,ΦCIRC) its PLP expression. Then,M is an Herbrand model of Circ(T ;P ;Z)
iff M is a p-answer set of(Π,ΦCIRC).

Proof. M is a model ofCirc(T ;P ;Z) iff there is no modelN of T such thatN �M. For
any two modelsM andN such thatM ∩Q=N ∩Q, N �M

iff ∃p ∈ P (p ∈M \N)∧¬∃p′ ∈ P (p′ ∈N \M)
iff ∃p∈P (notp∈N \M ∧ p∈M\N) ∧¬∃p′ ∈P (notp′ ∈M\N∧p′ ∈N \M)
iff M vN andN 6vM (with respect toΦCIRC).

Hence, for anyM andN such thatM ∩Q= N ∩Q, N �M iff M vN andN 6vM.
Therefore,N 6�M iff (M vN impliesN vM).

On the other hand, for anyM andN such thatM ∩Q 6= N ∩Q, if q ∈ (M \ N) ∩Q
thenM v N by q � notq in ΦCIRC. In this case,N vM also holds bynotq � q . Thus,
M vN iff N vM. AsM ∩Q 6=N ∩Q, N 6�M andM 6�N hold.

Therefore, for anyM andN , N 6�M iff (M vN impliesN vM) (∗).
LetM ∩ (Q ∪ Z)= Γ . If M is a Herbrand model ofCirc(T ;P ;Z), thenM is a minimal
model ofT ∪ Γ . In this case,M is a minimal model ofT ∪ {(λ | notλ←) ∈Π}M
iff M is a minimal model ofΠM

iff M is an answer set ofΠ .
Conversely, ifM is an answer set ofΠ ,M is a Herbrand model ofT . Thus, the statement

(∗) holds for answer setsM andN ofΠ . Hence,M is a Herbrand model ofCirc(T ;P ;Z)
iff M is a p-answer set of(Π,ΦCIRC). 2

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 203

Example 3.8 ([39]). Let T be the first-order theory6

block(x)∧¬ab(x)⊃ ontable(x),

¬ontable(b1),

block(b1),

block(b2),

whereP = {ab}, Z = {ontable} andQ = {block}. Circ(T ;P ;Z) is expressed in the PLP
(Π,ΦCIRC) as

Π : ontable(x) | ab(x)← block(x),

← ontable(b1),

block(b1)←,
block(b2)←,
ontable(x) | not ontable(x)←,
block(x) | not block(x)← .

ΦCIRC: ab(x)� not ab(x),

block(x)� not block(x), not block(x)� block(x).

Then,(Π,ΦCIRC) has the p-answer set

{block(b1),block(b2),ab(b1),ontable(b2)},
which correspond to the Herbrand model ofCirc(T ;P ;Z).

3.3.2. Prioritized circumscription
Next we consider realizingprioritized circumscription[35] in PLP.
Let P be a tuple of predicates from a first-order theoryT , which is split into disjoint

partsP1, . . . ,Pk . Thenprioritized circumscription Circ(T ;P1 > · · · > Pk;Z) minimizes
extensions ofPi with a priority higher than those ofPj (i < j) with Z varied. The setQ
of all predicates other thanP andZ from T are fixed as before. For any two structuresM1

andM2,M1�M2 iff
(i) |M1| = |M2|,
(ii) M1[[Q]] =M2[[Q]],
(iii) for everyj = 1, . . . , k, if M1[[P1, . . . ,Pj−1]] =M2[[P1, . . . ,Pj−1]] thenM1[[Pj]] ⊂

M2[[Pj]],
whereM[[P1, . . . ,Pk]] =M[[P1∪ · · · ∪Pk]]. A modelM of T is a model ofCirc(T ;P1>

· · ·>Pk;Z) iff there is no modelN of T such thatN �M [36].
Given a setT of clauses, the PLP expression of prioritized circumscription is defined as

follows.

6 The unique name assumption holds under the Herbrand interpretation, henceb1 6= b2 is omitted inT .

204 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Definition 3.12 (Prioritized circumscription in PLP). Given a prioritized circumscription
Circ(T ;P1> · · ·>Pk;Z), its PLP expression(Π,ΦPCIRC) is defined as follows.

(i) For any clause (5) inT ,Π has the rule

A1 | · · · |Al←B1, . . . ,Bm.

(ii) For any fixed or variable predicateλ in T ,Π has the rule

λ(x) | notλ(x)← .

(iii) Priorities are given as

ΦPCIRC

= {pi(x)� notpi(x): pi ∈ Pi (i = 1, . . . , k)}
∪ {notpi+1(x)� notpi(y): pi ∈ Pi,pi+1 ∈ Pi+1 (i = 1, . . . , k − 1)}
∪ {q(x)� notq(x),notq(x)� q(x): q ∈Q}.

Here,x andy are tuples of variables in each predicate.

The transformation is the same as the case of parallel circumscription with the
only difference that the predicate hierarchyP1 > · · · > Pk is expressed inΦPCIRC as
notpi+1(x) � notpi(y), which means that extensions frompi is minimized at a higher
priority than those frompi+1.

With this setting, prioritized circumscription is characterized by the p-answer sets of
(Π,ΦPCIRC). In the following,pi is also used to represent an atom with a minimized
predicate fromPi .

Theorem 3.9 (Prioritized circumscription versus p-answer set).Let Circ(T ;P1 > · · · >
Pk;Z) be a prioritized circumscription and(Π,ΦPCIRC) its PLP expression. Then,M is
an Herbrand model of Circ(T ;P1> · · ·> Pk;Z) iff M is a p-answer set of(Π,ΦPCIRC).

Proof. First, any modelM of Circ(T ;P1> · · ·>Pk;Z) is a model ofCirc(T ;P1, . . . ,Pk;
Z). Then,M is an Herbrand model ofCirc(T ;P1> · · ·> Pk;Z) iff there is no Herbrand
modelN of Circ(T ;P1, . . . ,Pk;Z) such thatN �M. For any Herbrand modelM andN
of Circ(T ;P1, . . . ,Pk;Z) such thatM ∩Q=N ∩Q, N �M iff

∃i (16 i 6 k) ∃pi ∈ Pi (pi ∈M \N)∧¬∃p′i ∈ Pi (p′i ∈N \M)
∧ ∀pj ∈ Pj (j < i) (pj ∈M⇔ pj ∈N). (∗)

SinceM is minimal wrt the extensions ofP , (∗) implies

∃k (i<k) ∃pk∈ Pk (pk ∈N \M).
Hence,(∗) iff

∃i (16 i 6 k) ∃pi ∈ Pi (pi ∈M \N)
∧ ∃k(i < k) ∃pk ∈ Pk (pk ∈N \M)
∧ ¬∃p′i ∈ Pi (p′i ∈N \M)
∧ ∀pj ∈ Pj (j < i) (pj ∈M⇔ pj ∈N)

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 205

iff

∃i (16 i 6 k) ∃pi ∈ Pi (notpi ∈N \M)
∧ ∃k(i < k) ∃pk ∈ Pk (notpk ∈M \N)
∧ ¬∃p′i ∈ Pi (notp′i ∈M \N)
∧ ¬∃pj ∈ Pj (j < i) (notpj ∈M \N)
∧ ¬∃p′j ∈ Pj (j < i) (notp′j ∈N \M)

iff

∃i (16 i 6 k) ∃pi ∈ Pi (notpi ∈N \M)
∧ ∃k(i < k) ∃pk ∈ Pk (notpk ∈M \N)
∧ ¬∃pj ∈Pj (j 6 i) (notpj ∈M\N)
∧ ¬∃p′j ∈Pj (j <i) (notp′j ∈N \M). (†)

Here,

∃i (16 i 6 k) ∃pi ∈ Pi (notpi ∈N \M)
∧ ∃k(i < k) ∃pk ∈ Pk (notpk ∈M \N)
∧ ¬∃pj ∈ Pj (j 6 i) (notpj ∈M \N) (‡)

impliesM vN andN 6vM (with respect toΦPCIRC). Therefore,(†) impliesM vN and
N 6vM. Conversely,M vN andN 6vM imply (‡). In this case, there is a minimali which
satisfies(‡). Consider the minimali ′ which satisfies the first conjunct∃pi′ ∈Pi′ (notpi′ ∈
N \M) of (‡). Then, the second conjunct∃k (i ′ < k) ∃pk ∈Pk (notpk ∈M \N) is also
satisfied. If the third conjunct is not satisfied, i.e.,∃pj ∈Pj (j 6 i ′) (notpj ∈M \N),
thenM v N implies N v M, which contradicts the assumption. Hence,¬∃pj ∈ Pj
(j 6 i ′) (notpj ∈ M \ N) also holds. Sincei ′ is a minimal one satisfying∃pi′ ∈
Pi′ (notpi′ ∈N \M), it holds that¬∃p′j ∈Pj (j <i ′) (notp′j ∈ N \M). Then, by putting
i = i ′, (‡) implies(†), thusM vN andN 6vM imply (†). Hence, for anyM andN such
thatM∩Q=N ∩Q,N �M iff M vN andN 6vM, therebyN 6�M iff (M vN implies
N vM).

On the other hand, for anyM andN such thatM ∩Q 6= N ∩Q, M v N iff N vM
by the same argument as in Theorem 3.8. Therefore, for anyM andN , N 6� M iff
(M vN impliesN vM). Since Herbrand modelsM andN of Circ(T ;P1, . . . ,Pk;Z) are
(p-)answer sets ofΠ by Theorem 3.8,M is an Herbrand model ofCirc(T ;P1 > · · · >
Pk;Z) iff M is a p-answer set of(Π,ΦPCIRC). 2
Example 3.9 ([39]). Let T be the first-order theory

block(x)∧¬ab1(x)⊃ ontable(x),

heavy_block(x)∧¬ab2(x)⊃¬ontable(x),

heavy_block(x)⊃ block(x),

heavy_block(b1), block(b2), ¬heavy_block(b2),

206 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

where P1 = {ab2} and P2 = {ab1} with P1 > P2, and Z = {ontable} and Q =
{block,heavy_block}. Circ(T ;P1>P2;Z) is expressed in the PLP(Π,ΦPCIRC) as

Π : ontable(x) | ab1(x)← block(x),

ab2(x)← ontable(x),heavy_block(x),

block(x)← heavy_block(x),

heavy_block(b1)←,
block(b2)←,
← heavy_block(b2),

ontable(x) | not ontable(x)←,
block(x) | not block(x)←,
heavy_block(x) | not heavy_block(x)← .

ΦPCIRC: ab1(x)� not ab1(x), ab2(x)� notab2(x),

not ab1(x)� not ab2(x),

block(x)� not block(x), not block(x)� block(x),

heavy_block(x)� not heavy_block(x),

not heavy_block(x)� heavy_block(x).

Then,(Π,ΦPCIRC) has the p-answer set

{heavy_block(b1),block(b1),block(b2),ontable(b2),ab1(b1)},
which corresponds to the Herbrand model ofCirc(T ;P1>P2;Z).

3.3.3. Connection to the perfect model semantics
It is known that prioritized circumscription is also characterized by theperfect model

semantics[46] of a stratified disjunctive program in the absence of fixed and variable
predicates. In this section, we address the semantical relationship between perfect models
and p-answer sets.

As presented in Section 2.1, normal disjunctive programs are defined as a subset of
GEDPs. An NDP consists of rules of the form

A1 | · · · |Al←Al+1, . . . ,Am,notAm+1, . . . ,notAn (n>m> l > 0), (6)

where eachAi is an atom. An NDP is called apositive disjunctive programif each rule
contains no NAF (i.e.,m= n). An NDPΠ is stratified[46] if it is possible to decompose
the setP of all predicates ofΠ into the disjoint setsP1, . . . ,Pk (calledstrata), such that
for every rule (6) inΠ ,

(i) predicates of the atomsAh (h= 1, . . . , l) belong to the same stratumPs ;
(ii) predicates of the atomsAi (i = l + 1, . . . ,m) belong to

⋃{Pt : t 6 s};
(iii) predicates of the atomsAj (j =m+ 1, . . . , n) belong to

⋃{Pt : t < s}.
Any decomposition{P1, . . . ,Pk} satisfying the above conditions is called astratification
ofΠ .

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 207

Let pred(A) be the predicate of an atomA. An atomA has ahigher priority thanan
atomB (writtenB <A) iff pred(A) ∈ Pi andpred(B) ∈ Pj with i < j . Given two distinct
modelsM andN , M is preferableto N (M�N) iff for any atomA ∈M \N there is an
atomB ∈ N \M such thatA < B. A modelM is perfectif there is no model preferable
toM.

In a stratified program the existence of integrity constraints causes some problems.
Syntactically, an integrity constraint← p has the same effect as the non-stratified rule
q ← p,notq whereq is a new atom appearing nowhere in a program. Semantically, a
perfect model may not besupported[2,4] 7 in the presence of integrity constraints.

Example 3.10.Let Π = {q ← notp,← q} with the priority q < p. ThenΠ has the
perfect model{p} which is not supported.

Note that the above program has no answer set. Thus, perfect models provide an intuitive
meaning when a stratified program contains no integrity constraints. With this reason, we
assume no integrity constraints in stratified programs hereafter in this subsection.

In a stratified programΠ , the perfect models coincide with the answer sets [47], hence
they also coincide with the p-answer sets of(Π,∅). In what follows, we present yet another
characterization of perfect models of a stratified NDP in terms of p-answer sets of a PLP.

Given an NDPΠ , we define the corresponding first-order theoryT (Π) such that any
rule (6) inΠ is transformed to the clause

A1∨ · · · ∨Al ∨¬Al+1∨ · · · ∨ ¬Am ∨Am+1∨ · · · ∨An (7)

in T (Π). We writeCirc(T ;P1 > · · ·> Pk;Z) with Z = ∅ simply asCirc(T ;P1 > · · · >
Pk).

Lemma 3.10 (Perfect model versus prioritized circumscription, [46, Theorem 5]).8 Let
Π be a stratified NDP and{P1, . . . ,Pk} a stratification ofΠ . Then,M is a perfect model
ofΠ iff M is an Herbrand model of Circ(T (Π);P1> · · ·>Pk).

Let T +(Π) be a positive disjunctive program such that any clause (7) inT (Π) is
replaced by the rule

A1 | · · · |Al |Am+1 | · · · |An←Al+1, . . . ,Am

in T +(Π).

Theorem 3.11 (Perfect model versus p-answer set).LetΠ be a stratified NDP with the
stratification {P1, . . . ,Pk}. Then,M is a perfect model ofΠ iff M is a p-answer set of
(T +(Π),ΦSTRAT) whereΦSTRAT= {notpi+1(x) � notpi(y) : pi ∈ Pi,pi+1 ∈ Pi+1(i =
1, . . . , k − 1)}.

7 A modelM of an NDPP is supported[4] if for any atomA ∈M there is a ground rule of the form (6) from
P such that{A1, . . . ,Al } ∩M =A, {Al+1, . . . ,Am} ⊆M , and{Am+1, . . . ,An} ∩M = ∅.

8 The expression is modified in our context.

208 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Proof. When there are no fixed and variable predicates, the PLP expression of prioritized
circumscription of Definition 3.12 includes neither disjunctive rules of (ii) nor symmetric
priorities on predicates fromQ in ΦPCIRC. Moreover, any p-answer set ofT +(Π) is
minimal with respect to extensions of the predicates fromP due to the minimality
of answer sets (or minimal models) of a positive disjunctive program. Thus, priorities
pi(x) � notpi(x) (i = 1, . . . , k) in ΦPCIRC are automatically satisfied. Then the result
follows by Theorem 3.9 and Lemma 3.10.2
Example 3.11. LetΠ be the program

p | q← notr,

r← nots

with the stratificationP1 = {s}, P2 = {r}, P3 = {p,q}. It is expressed by the PLP
(T +(Π),ΦSTRAT) as

T +(Π): p | q | r←,
r | s← .

ΦSTRAT: notp � notr,notq � notr,notr � nots.

Then,(T +(Π),ΦSTRAT) has the p-answer set{r}, which coincides with the perfect model
ofΠ .

The above theorem presents that a stratified NDP is equivalently expressed by anot -free
positive disjunctive program plus priorities.9 The result is also directly extended tolocally
stratifiedNDPs.

4. Computation

4.1. φ-program

In this section, we provide an algorithm for selecting p-answer sets from answer sets.
For this purpose, we introduce a program transformation which embeds priorities into a
program. To make such embedding easier, we first eliminate NAF formulas in priorities
without changing the meaning of a PLP.

Definition 4.1 (Eliminating NAF fromΦ). Given a PLP(P,Φ), define(P ′,Φ ′) which is
obtained by replacing any NAF formulanota in Φ with a in Φ ′, and introducing a new
rulea← nota to P for any such replacement. The resulting program isP ′.

Example 4.1. Let (P,Φ) be the PLP such that

9 Dimopoulos and Kakas [13] present a different method of replacing NAF with priorities over rules.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 209

P : p← q,

q | not q← .

Φ : q � notq.

Then,(P ′,Φ ′) becomes

P ′ : p← q,

q | notq←,
q← notq.

Φ ′ : q � q.
(P ′,Φ ′) has the p-answer set{q} which corresponds to the p-answer set∅ of (P,Φ).

Proposition 4.1 (PLP with NAF-freeΦ). Given a PLP(P,Φ), let (P ′,Φ ′) be a PLP
which is obtained by Definition4.1. If S is a p-answer set of(P,Φ), there is a p-answer
setS′ of (P ′,Φ ′) such thatS′ ∩ LP = S. In converse, ifS′ is a p-answer set of(P ′,Φ ′),
there is a p-answer setS of (P,Φ) such thatS = S′ ∩LP .

Proof. By the definition,a /∈ S iff a ∈ S′ for anya ∈LP . Then the result holds.2
Thus, without loss of generality, in this section we consider PLPs which contain no NAF

formulas inΦ.
Next we consider representing priorities in terms of rules, which is used for computing

p-answer sets.

Definition 4.2 (φ-program). Given a PLP(P,Φ), theφ-programis defined as

PΦ = P ∪ {φ+ci≺cj ← cj ,notci, φ
−
ci≺cj ← ci,notcj | (ci ≺ cj) ∈Φ∗}.

The newly introduced rules are calledφ-rules, and the atomsφ+ci≺cj and φ−ci≺cj are
calledφ-atoms. The set ofφ-rules is finite when the closureΦ∗ is finite (modulo variable
renaming). The idea ofφ-rules is as follows. If an answer set containscj but does not
containci , the atomφ+ci≺cj becomes true by theφ-rule; else if the converse is the case,

the atomφ−ci≺cj becomes true. Thus, if an answer set impliesφ-atoms, it indicates that the
answer set contains a literal which is subject to preference. InPΦ , the “strict” priority
relation ≺ is considered instead of�. If ci � cj and cj � ci hold, two answer sets
respectively containingci andcj have an equal priority with respect to these literals. Using
theφ-program, the following procedure selects p-answer sets from answer sets.

Definition 4.3 (Procedure for selecting p-answer sets). Let (P,Φ) be a PLP such that the
closureΦ∗ is finite. Then, the following procedure outputs a set∆ of answer sets.

(i) PutΣ and∆ as the sets of all answer sets ofPΦ .
(ii) For everyT ∈ Σ , check the following: for any(ci ≺ cj) ∈ Φ∗, if φ−ci≺cj ∈ T and

φ+ci≺cj ∈ T ′ for someT ′ ∈Σ , and there is no(cj ≺ ck) ∈Φ∗ such thatφ+cj≺ck ∈ T
andφ−cj≺ck ∈ T ′, then discardT from∆.

210 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

In the first step, we assume an external procedure for computing the answer sets of
an GEDPPΦ . A procedure for this purpose is given in [26] for function-free and range-
restricted GEDPs. In the second step, any answer set which includes a literal with a
relatively lower priority is discarded from∆ using priority information encoded inφ-
atoms.

Note that if we check preference between answer sets without usingφ-atoms, we
have to check priority relations over all literals included in every answer set ofP . By
contrast,φ-atoms appear in an answer set ofPΦ only if the answer set contains any
literal which is subject to priorities. Thus, to check preference between answer sets it is
enough to compare answer sets containingφ-atoms and literals appearing inφ-atoms. Any
answer set including noφ-atom is irrelevant to preference, and it becomes a p-answer set
automatically.

We show that the above procedure is used for selecting the p-answer sets of a PLP.

Definition 4.4 (Cycle-free). The p-answer sets of a PLP(P,Φ) are calledcycle-freeif
S1v S2 impliesS1< S2 for any two p-answer setsS1 andS2 of (P,Φ).

Theorem 4.1 (Soundness/completeness of the procedure).Let (P,Φ) be a PLP with finite
Φ∗, and∆ the set produced by the above procedure. IfT ∈∆, there is a p-answer setS of
(P,Φ) such thatS = T ∩LP . The converse also holds if the p-answer sets of(P,Φ) are
cycle-free.

Proof. WhenT is an answer set ofPΦ , T ∩LP is an answer set ofP . Thus, for anyT ∈∆,
T ∩LP is an answer set ofP . If there is noφ−ci≺cj in T , T contains no literalci such that

(ci ≺ cj) ∈ Φ∗, so S is a p-answer set of(P,Φ). Else if there is someφ−ci≺cj in T , it

implies either (a)¬∃T ′ ∈Σ such thatφ+ci≺cj ∈ T ′, or (b)∃T ′ ∈Σ such thatφ+ci≺cj ∈ T ′,
andφ+cj≺ck ∈ T andφ−cj≺ck ∈ T ′ for some(cj ≺ ck) ∈ Φ∗. In case of (a), there is noT ′
such thatT v T ′. In case of (b),ck ∈ T \ T ′ for some(cj ≺ ck) ∈ Φ∗. Then,T 6v T ′ by
the definition. Thus, in either case, there is no answer setS′ = T ′ ∩ LP of P , which is
preferable toS = T ∩LP . Hence,S is a p-answer set of(P,Φ).

The converse direction proceeds as follows. Since{T ∩ LP | T ∈ Σ} is the set of
all answer sets ofP which includes every p-answer set of(P,Φ), we show that any
answer set removed from∆ by the procedure does not correspond to any p-answer set.
SupposeT ∈ Σ . If φ−ci≺cj ∈ T and ∃T ′ ∈ Σ such that φ+ci≺cj ∈ T ′, then there exist

rules: (φ+ci≺cj ← cj ,notci) and (φ−ci≺cj ← ci,notcj) in PΦ such thatci ∈ T \ T ′ and

cj ∈ T ′ \ T with (ci ≺ cj) ∈ Φ∗. If there is noφ+cj≺ck in T , there is nock ∈ T \ T ′ such
that(cj ≺ ck) ∈Φ∗. Thus,T v T ′. As the p-ansver sets of(P,Φ), are cycle-free,T ′ 6v T
holds. Then,T ∩LP cannot be a p-answer set of(P,Φ), soT is removed from∆. Hence,
for any p-answer setS of (P,Φ), there is a setT ∈∆ such thatS = T ∩LP . 2
Example 4.2. Let (P,Φ) be the PLP such that

P : p | q | r←,
s← p.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 211

Φ : p � q, r � s.
Then, theφ-program becomes

PΦ : p | q | r←,
s← p,

φ+p≺q← q,notp, φ−p≺q← p,notq,

φ+r≺s← s,notr, φ−r≺s← r,nots.

First, putΣ = ∆ = {{p, s,φ−p≺q,φ+r≺s}, {q,φ+p≺q}, {r,φ−r≺s}} as the set of answer sets of
PΦ . Next, forφ−p≺q in the first answer set,φ+p≺q is in the second answer set and there is
no φ−q≺x in the second one, so that the first one is discarded from∆. Likewise, the third
answer set is dropped from∆. As a result,∆= {{q,φ+p≺q}} and{q,φ+p≺q} ∩ LP = {q} is
the unique p-answer set of(P,Φ).

When the p-answer sets of a PLP(P,Φ) have a cycle, the above procedure is sound but
not complete for computing p-answer sets.

Example 4.3. Let (P,Φ) be a PLP such thatP has three answer setsS1 = {e1, e2},
S2 = {e3, e4}, S3 = {e5, e6}, andΦ = {e2 � e3, e4 � e5, e6 � e1}. There is a cycleS1 v
S2v S3v S1. However,S2v S1 is not known by comparingS1 andS2 (with φ-atoms). In
this case, allS1, S2 andS3 are discarded from∆ in the procedure.

It is generally difficult to judge whether the p-answer sets of a PLP have a cycle or not. In
fact, the structure ofΦ is not useful to know the existence of a cycle in the above example.

4.2. Complexity result

We next address the computational complexity of PLP. A PLP(P,Φ) is propositional
if P contains no variable andΦ is a set of priorities on ground elements fromL∗P . In this
section, we consider propositional PLPs.

We briefly review some basic concepts of computational complexity. The class P
(respectively NP) represents the set of all decision problems solvable in polynomial time by
deterministic (respectively non-deterministic) Turing machines. Thepolynomial hierarchy
consists of classes1P

k ,6P
k , and5P

k defined as

1P
0 =6P

0 =5P
0 = P,

1P
k+1= P6

P
k , 6P

k+1=NP6
P
k , 5P

k+1= co-6P
k+1 (k > 0).

In particular,1P
1 = P,6P

1 = NP, and5P
1 = co-NP.

In the above,1P
k+1 (respectively6P

k+1) is the set of problems solvable deterministically
(respectively non-deterministically) in polynomial time with an oracle for the problems in
6P
k . The class5P

k+1 consists of problems whose complements are in6P
k+1.

212 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

For GEDPs, the next results hold.

Lemma 4.3 (Complexity result for GEDP, [26]).LetP be a propositional GEDP. Then,
(i) Deciding the existence of an answer set ofP is62

P-complete.
(ii) Deciding whether a literal is true in some answer set ofP is62

P-complete.
(iii) Deciding whether a literal is true in every answer set ofP is52

P-complete.

The complexities of problems in PLP are as follows.

Lemma 4.4 (Checking a p-answer set).Let (P,Φ) be a propositional PLP. Given a setS
of literals, deciding whetherS is a p-answer set of(P,Φ) is in52

P.

Proof. GivenS, the reductPS is constructible in polynomial time.S is not an answer set of
P iff there is a setS′ ⊂ S which satisfies every rule inPS . Since a guess forS′ is verified
in polynomial time, deciding whetherS is an answer set ofP is in co-NP. On the other
hand, given an answer setS, checking whetherS < T holds for another answer setT of P
is done in polynomial time. If suchT does not exist,S is a p-answer set. As any answer
setT of P is decided with a call to an NP-oracle, the problem is in co-NPNP=52

P. 2
The next lemma is used in the proof of Theorem 4.6. (The expression is changed in our

context.)

Lemma 4.5 (Complexity result for minimal abduction, [15, Theorem 23]).Let P be
a propositional normal disjunctive program andO a ground atom representing an
observation. Then, deciding whether an atom is included in some credulous minimal
explanation ofO in P is6P

3 -complete.

Theorem 4.6 (Complexity result for PLP).Let (P,Φ) be a propositional PLP. Then,
(i) Deciding the existence of a p-answer set of(P,Φ) is62

P-complete.
(ii) Deciding whether a literal is true in some p-answer set of(P,Φ) is63

P-complete.
(iii) Deciding whether a literal is true in every p-answer set of(P,Φ) is53

P-complete.

Proof.
(i) (P,Φ) has a p-answer set iffP has an answer set. Then, the result holds by

Lemma 4.3.
(ii) To see the membership in63

P, first guess a set containing a literal. Then, whether it
is a p-answer set can be verified in polynomial time using a52

P oracle (Lemma 4.4)
and thus decidable with a query to a62

P oracle. Hence, the problem is in63
P.

On the other hand, deciding whether a literal is included in some (credulous)
minimal explanation is6P

3-complete in NDPs (Lemma 4.5). Since GEDPs strictly
include NDPs, the corresponding decision problem in GEDPs is6P

3-hard. As
minimal explanations are computed via p-answer sets (Theorem 3.2), the problem
of deciding whether a literal is true in some p-answer set is also63

P-hard.
(iii) is a complementary problem of (ii). Hence, the result holds by (ii).2

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 213

Corollary 4.7 (Complexity result for non-disjunctive PLP).Let (P,Φ) be a propositional
PLP such thatP is an ELP. Then,

(i) Deciding the existence of a p-answer set of(P,Φ) is NP-complete.
(ii) Deciding whether a literal is true in some p-answer set of(P,Φ) is62

P-complete.
(iii) Deciding whether a literal is true in every p-answer set of(P,Φ) is52

P-complete.

Proof. In the absence of disjunctions in a program, the complexity of each problem
reduces in one level of the polynomial hierarchy. Then, the results hold.2

Comparing the results of Lemma 4.3 and Theorem 4.6, an introduction of priorities to
a program causes an increase in complexity by one level of the polynomial hierarchy (for
the problems of (ii) and (iii)).

5. Related work

5.1. Prioritized logic programming

In this section, we compare the PLP with the existing prioritized logic programming
systems. We focus on the following points for comparison.

Priority: The definition of priority relations.
Language: The class of programs on which priority reasoning is introduced.
Commonsense reasoning: Applications to commonsense reasoning in AI.

5.1.1. Stratified programs
Stratified programs introduce a restricted form of priorities to logic programs.
Priority: In stratified programs priorities over atoms are decided by the syntactic

structure of a program. By contrast, priorities in PLP are specified separately from
the program. Hence, different programmers can specify different priorities in the same
program (as far as they do not contradict each other) without changing the body of
the program. In converse, any change in a program does not affect priorities. Moreover,
priorities in PLP generalize those in stratified programs in the following sense. First, any
stratification of a program can be expressed in terms of priorities in a PLP (Theorem 3.11),
but the converse transformation, representing arbitrary prioritiesΦ in a single stratification,
is generally impossible. Secondly, in a stratified programevery atom must beranked
according to the syntax of the program, while no such restriction exists in PLP and priority
are defined on any subset ofL∗P . Thirdly, PLP can express priorities between not only
atoms but also literals and NAF formulas in GEDPs.

Language: Stratified programs are defined as a subset of normal disjunctive programs.
A PLP is defined for GEDPs which include normal disjunctive programs.

Commonsense reasoning: Stratified programs can realize a restricted version of
prioritized circumscription [18]. Those restrictions are substantially relaxed in PLP
(Section 3.3.2). Further comparison is presented in Section 5.2.3.

214 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

5.1.2. Brewka
Brewka [6] introduces priorities to Reiter’s default logic to resolve conflicts between

default rules. In [7] a version of logic programming is proposed.
Priority: A strict partial order<, i.e., anirreflexiveand transitive relation, is introduced

over rules. By contrast, we used a reflexive and transitive relation over literals and
NAF formulas. Prioritization over rules is simulated in PLP as presented in Sections 2.3
and 3.2.2. This point is also discussed later in Section 5.1.8.

Reflexive relations permit to represent cyclic priorities which are useful for representing
tie situations. An example of this is demonstrated for representing priorities over fixed
predicates of circumscription in Section 3.3. Note that in PLP the existence of reflexive
relations between elements and the absence of relations are different in effect. For instance,
consider the theoryT = {p← q} wherep has the predicate to be minimized andq has the
fixed predicate. It is represented in the PLP(Π,ΦCIRC) with

Π = {p← q, q | notq←},
ΦCIRC= {p � notp,q � notq,notq � q}.

Then, the program has two p-answer sets∅ and {p,q} which correspond to the two
Herbrand models of the circumscription ofT . If we represent the equal priority simply
by not mentioning any priority betweenq andnotq ,Π with Φ ′CIRC= {p � notp} has the
unique p-answer set∅. The another model{p,q} does not become a p-answer set because
there is no priority to select it. Thus, a reflexive relation is effective for representing tie
situations which are not affected by other priorities. (See also the comparison of priority in
Section 5.1.3.)

Language: Brewka [7] considers ELPs which are a strict subclass of GEDPs. The well-
founded semantics is considered as an underlying semantics.

Commonsense reasoning: The primary interest of Brewka is to resolve conflicts
between default rules. PLP is used for not only default reasoning but other (prioritized)
commonsense reasoning such as abduction and circumscription. On the other hand,
Brewka [7] introduces a method of encoding preference information in a program and
using them to reason about priorities. The PLP framework would be also extended in this
direction but it is not addressed in this paper.10

5.1.3. Brewka and Eiter
Brewka and Eiter [8] introduce preference over answer sets in extended logic programs.
Priority: In [8] a strict partial order is defined over rules. Hence, the same argument as in

the comparison with Brewka is applied. Moreover, Brewka and Eiter [8] define a preferred
answer sets forfully prioritized programs. For instance, consider the program

r1 : a← c,notb,

r2 : b← d,nota,

r3 : c← notd,

10Priorities with preconditions, which is presented in an example of [7], is also encoded in PLP using the
technique of Section 2.3.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 215

r4 : d← notc,

with the priorityr2 � r1 (r1 is preferred overr2). In this case, they consider a total-order
over rules which is compatible withr2 � r1 (called full prioritization). Their preferred
answer set then becomes{a, c} if r4 � r3 � r2 � r1 for instance, while it becomes{b, d}
if r2 � r1 � r3 � r4. On the other hand, in PLP the p-answer set is selected according
to the existing priorityr2 � r1. In the above program, using the transformation for rule
prioritization in Section 2.3, the PLP expression of the above program becomes

Π : a← c,notb, r1← c,notb,

b← d,nota, r2← d,nota,

c← notd,

d← notc,

Φ : r2 � r1.
Then,(Π,Φ) has the unique p-answer set{a, c, r1} which corresponds to{a, c}.

Generally, in [8] the absence of priority between rulesri andrj implies two possibilities
ri � rj andrj � ri , which are independent of the existing priorities. On the other hand,
in PLP the existing priorities dominate the selection of p-answer sets, and the absence
of priorities means a selection which may vary according to the existing priorities. In
the above program,r1 has a priority overr2, then an answer set which includesr1 is
selected as the unique p-answer set (and consequently,r3 is preferred overr4). If one
desires to consider two possibilities of the preference betweenr3 andr4 independent of the
existingr2� r1, it is done in PLP by explicitly specifying symmetric prioritiesr3� r4 and
r4� r3.

Language: Their preferred answer set semantics is defined for ELPs which are a strict
subclass of GEDPs.

Commonsense reasoning: Their primary concern is to resolve conflicting multiple
answer sets and no application to other nonmonotonic formalisms is presented.

There are some other important differences between [8] and ours.
Monotonicity versus Nonmonotonicity: Their framework is monotonic with respect to

the introduction of preference information. That is, introducing priorities monotonically
reduces the number of answer sets. This means that once some conclusion is believed
by the current preference knowledge, there is no way to invalidate the conclusion by
introducing new preference knowledge. By contrast, in PLP adding preference information
may nonmonotonically revise the previous beliefs (Proposition 2.2).

Preference information is possibly incomplete. Then, the p-answer sets select answer
sets according to the priorities available inΦ. However, the selection might change by
the introduction of new preference information. Such a change often happens in the real
life. For example, we make a plan to manage daily jobs according to their priorities, while
we are obliged to change the plan when an urgent job (with the highest priority) comes
up. Thus, we consider the nonmonotonic aspect of prioritized reasoning is important and
useful in commonsense reasoning.

216 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

Principles of prioritized reasoning: Brewka and Eiter also introduce general principles
for priorities as follows.

Principle I. Let B1 andB2 be two belief sets of a prioritized theory(T ,<) generated by
the set of (ground) rulesR ∪ {d1} andR ∪ {d2}, whered1, d2 /∈ R, respectively. Ifd1 is
preferred overd2, thenB2 is not a (maximally) preferred belief set ofT .

Principle II. LetB be a preferred belief set of a prioritized theory(T ,<) andr a (ground)
rule such that at least one prerequisite ofr is not inB. ThenB is a preferred belief set of
(T ∪ {r},<′) whenever<′ agrees with< on priorities among rules inT .

In the above, belief sets corresponds to answer sets in our context, and a prerequisite
means a literal (without NAF) in the body of a rule. Roughly speaking, the first principle
means that a belief set is preferred if it is generated by a rule with a relatively higher
priority. The second principle says that adding a rule which is not applicable in a preferred
belief set never changes this preference as far as the preference over old knowledge is kept.

Our p-answer sets satisfy Principle I. That is, if answer setsS1 andS2 are respectively
produced by rulesr1 andr2, and the priorityr2 � r1 is given, thenS1 is preferred toS2 as
presented in Section 3.2.2. However, p-answer sets do not satisfy Principle II in general.
Take for instance, the following programP from [8]:

r1 : b← a,not¬b,
r2 : ¬a← nota,

r3 : a← not¬a,
wherer1 is preferred overr2, andr2 is preferred overr3. The program has two answer
setsS1 = {¬a} andS2 = {a, b}. Regarding Principle II,S1 is the preferred answer set of
{r2, r3}, then addingr1, whose prerequisitea is not satisfied byS1, should be ignored
in selecting preferred answer sets regardless of the priority onr1. As a result, Brewka
and Eiter selectS1 as the preferred answer set ofP . On the other hand, in PLP using
the program transformation in Section 2.3, the p-answer set becomes{a, b, r1, r3}, which
corresponds toS2.

In contrast to Brewka and Eiter’s Principle II, our selection ofS2 is explained as follows.
S2 is the preferred answer set of{r1, r3}. By addingr2 to {r1, r3}, we keepS2 as the p-
answer set of{r1, r2, r3}. That is,the introduction ofr2, whose priority is lower thanr1,
does not affect the consequence ofr1. Brewka and Eiter’s preferred answer sets do not
satisfy this property.

Hence, we consider that Brewka and Eiter’s Principle II is optional, and the utility of the
property would depend on applications.

5.1.4. Wang et al.
Wang et al. [56] introducepriority logic having the following feature.
Priority: A priority constraint, which is not necessarily a partial order, is defined over

rules.
Language: They consider rules of the formβ← α1, . . . , αm whereβ andαi are first-

order formulas. The meaning of a program is defined by stable arguments.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 217

Commonsense reasoning: (Propositional) default theories and defeasible inheritance
networks are represented by priority logic.

Their claim is that nonmonotonic reasoning is replaced by monotonic inference plus
priority constraints. This view is interesting, but it is not clear how general this replacement
is possible. According to [31], priority logic and Reiter’s default logic have the same
expressive power. From the complexity viewpoint, PLP is more expressive than default
logic (Section 4.2), thereby more expressive than priority logic.

5.1.5. Zang and Foo
Zang and Foo [57] introduce yet another “PLP”, which is close to [8].
Priority: A strict partial order is defined over rules.
Language: Preferred answer sets are introduced for ELPs.
Commonsense reasoning: Their prioritized logic programs are devised to resolve

conflicting multiple answer sets. Its application to program update is presented in [58],
while no explicit connection to other nonmonotonic formalism is presented.

Zang and Foo also introduce the framework ofdynamic preferencelike [7], which
enables a programmer to dynamically specify preference information in a program.

5.1.6. Buccafurri et al.
Buccafurri et al. introduce a language calleddisjunctive ordered logic(DOL). In [10]

the authors introduce another language called DLP<.
Priority: A strict partial order is defined over (sets) of rules.
Language: Each language handles extended disjunctive programs (DOL includes no

NAF). DLP< extends the answer set semantics, while DOL considers a different semantics.
Commonsense reasoning: DOL realizes defeasible reasoning by preferring more specific

rules, and DLP< effectively realizes inheritance.
The above two languages introduce priorities to disjunctive logic programs, but the

purpose is different from PLP. DOL and DLP< introduce priorities to resolve conflicts in
default reasoning, while PLP introduces priorities to reduce non-determinism which arises
in disjunctive logic programs. From the complexity viewpoint, DOL and DLP< are at the
same complexity level as disjunctive logic programming, which is in contrast to PLP.

5.1.7. Others
Priority: Priorities are defined over (conflicting) default rules [1,13,21,24] and (sets of)

atoms [45]. In [25] priorities with preconditions are used.
Language: Extended logic programs [1,13,21,24] and Datalog with integrity constraints

[45], which are all strict subclasses of GEDPs. In [25] constraint (definite) logic programs
are considered.

Commonsense reasoning: Analyti and Pramanik [1] introduce priorities to resolve
contradiction in a program. Dimopoulos and Kakas [13] replace NAF by prioritized
reasoning, and apply their method to temporal reasoning. Gelfond and Son [21] introduce
meta-level axioms for prioritized defeasible reasoning. Pradhan and Minker [45] and
Grosof [24] use priorities for combining conflicting knowledge bases of multi-agents.
These work introduce priorities to select intended conclusions from conflicting knowledge.
By contrast, PLP is used for not only resolving confliction, but reducing various kinds

218 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

of non-determinism in logic programming and realizing various forms of commonsense
reasoning. Govindarajan et al. [25] use priority knowledge to select best solutions in the
context of constraint logic programming.

5.1.8. Rule-based versus Literal-based
As presented above, most prioritized LP-languages introduce priorities between rules. It

is in contrast to PLP in which priorities are specified over literals and NAF-formulas. We
discussed in Sections 2.3 and 3.2.2 how to express priorities between (default) rules in PLP.
Thus, PLP can simulate reasoning with prioritized rules. On the other hand, it is unknown
how to specify priorities over disjunctive or abductive knowledge in terms of languages
with rule-based preference.

5.2. Commonsense reasoning

PLP can realize abduction, default reasoning, circumscription, and their prioritized
versions. We compare our PLP methods with the existing frameworks for (prioritized)
commonsense reasoning in AI.

5.2.1. (Prioritized) abduction
Minimal explanations are usually computed by comparing generated explanations. In the

context of abductive logic programming, minimal explanations are computed by selecting
A-minimal answer sets of a GEDP (Lemma 3.1). On the other hand, PLP encodes the
selection of minimal explanations in the language using the prioritiesΦMA. 11 Moreover,
PLP can specify further preference over minimal explanations as in Section 3.1.2.
Eiter and Gottlob [14] introduce priorities to abduction. In their framework, the set of
abducibles are partitioned into levels of priorities and explanations containing the most
preferable hypotheses are selected. Such a hierarchical structure is easily expressed in our
prioritized abduction. However, the converse translation, representing arbitrary priorities
over abducibles in a single abducible hierarchy is generally impossible.

5.2.2. (Prioritized) default reasoning
There are several systems which incorporate priorities into default reasoning. For

instance, Baader and Hollunder [3], Brewka [6], Delgrande and Schaub [12], and Rintanen
[50] introduce a strict partial/total order over (normal) defaults, these formalisms specify
the order of default applications in constructing default extensions. Our approach is
a bit different from them in the sense that we compare preference between extension
bases, rather than specifying the order of rule applications in the process of computation.
Resolving conflicting defaults has been discussed by several researchers in the context
of extended logic programs [28,34,43]. These approaches use program transformations
to resolve contradiction in a program. By contrast, PLP expresses priorities over defaults
outside a program, which enables us to specify priorities independent of a program.

11Eiter et al. [16] present an algorithm of computing minimal explanations in (function-free) definite logic
programs via answer sets of disjunctive logic programs.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 219

5.2.3. (Prioritized) circumscription
Several researchers propose methods for compiling (prioritized) circumscription into

logic programs. Gelfond and Lifschitz [18] provide a method of compiling prioritized
circumscription into stratified logic programs. In their framework, however, every clause is
assumed to contain at most one variable predicate and no fixed predicate. Moreover, they
do not transform any clause having more than one disjunct included in the same strata nor
any negative clause in first-order theories. By contrast, the PLP expression of prioritized
circumscription presented in this paper has no such restriction. Sakama and Inoue [52]
present another transformation from circumscription to a GEDP. The transformation is
not necessarily done in polynomial-time as it requires the computation ofcharacteristic
clauses[27]. The transformation of [52] is extended to prioritized circumscription by
several researchers [11,55], but it still requires the computation of characteristic clauses.

5.2.4. PLP versus NMR
We have presented methods of realizing (prioritized) commonsense reasoning in terms

of PLP. On the other hand, it is unknown how to express PLP in terms of the existing
frameworks of nonmonotonic reasoning in general. For instance, a predicate hierarchy in
prioritized circumscription is expressed by a set of priorities in a PLP, but the converse
translation, representing a set of priorities with a pre-order priority relation in a single
predicate hierarchy, is generally impossible.12 From the complexity viewpoint, expressing
PLPs in terms of existing major nonmonotonic logics, which are at the second level of the
polynomial hierarchy [22,31], is most unlikely possible.

6. Concluding remarks

Prioritized logic programming realizes reasoning with priorities, which is useful for
reducing non-determinism in logic programming. PLP can specify preference knowledge
separate from programming knowledge. This means that a control part which determines
strategies for problem-solving is separated from a logic part which specifies a declarative
background knowledge. Such a separation accords with Kowalski’s principle of logic
programming [33]. We introduced PLP under the answer set semantics, while an analogous
mechanism is easily devised for other semantics of logic programming.

From the AI side, PLP can express various forms of commonsense reasoning in the
single language. This is meaningful for comparing commonsense reasoning in different
languages and for better understanding the nature of priorities in each reasoning. Moreover,
such characterization exploits strong links between logic programming and commonsense
reasoning in AI.

Currently, PLP has no efficient implementation. The selection algorithm introduced in
Section 4.1 requires computation of every answer set in advance. On the other hand,
translating PLPs to some existing LP language would provide an immediate way of
implementing PLP. Some hints might be in studies like [12] which presents a method

12Grosof [23] introduced a generalized circumscription having pre-order priority relations over first-order
predicates.

220 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

of embedding priorities into default theories. However, it is unlikely that PLPs can
be efficiently translated into existing LP languages in general. This is because the
computational complexity of PLP is at the third level of the polynomial hierarchy, while
the complexities of most existing LP languages lie within the second level. The complexity
result Corollary 4.7 suggests the existence of a polynomial-time transformation from non-
disjunctive PLPs to disjunctive LPs. However, it is at present an open question whether
there exists a modular transformation for this purpose.

There are several directions for future research. The present PLP framework specifies
priorities outside a program. Extending the language to be able to specify dynamic
priorities inside a program will increase the utility of PLP. Examples of this direction are
in [7,57]. In this paper, we considered a problem setting such that priorities are given in
advance. On the other hand, Inoue and Sakama [30] introduce a framework ofpreference
abductionin which preference information is abduced by an observation. Thus, preference
abduction is used for revising a PLP; when new information arrives at a PLP, preference
abduction can produce new priorities.

Commonsense (nonmonotonic) reasoning and reasoning with priorities are closely
related. Shoham [51] argues that the non-standard behavior of nonmonotonic reasoning is
due to preference mechanisms within it. According to Shoham, “nonmonotonic logics are
the result of associating a standard logic with a preference relation on models”. Examples
of research along this line are [9,13,56]. Using the program transformation from a GEDP to
a positive disjunctive program (plus integrity constraints) in [26], PLP is also expressed in
terms of a monotonic positive disjunctive program plus priorities. However, it is not clear
whether such a translation, from nonmonotonic logics to monotonic logics plus priorities,
is generally possible or not. The general correspondence between nonmonotonic reasoning
and prioritized reasoning is a challenging topic.

Acknowledgements

The authors thank Thomas Eiter for useful discussion on the subject of this paper. We
also thank anonymous referees for comments on an earlier draft of this paper.

References

[1] A. Analyti, S. Pramanik, Reliable semantics for extended logic programs with rule prioritization, J. Logic
Comput. 5 (3) (1995) 303–324.

[2] K.R. Apt, H.A. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.),
Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, CA, 1988,
pp. 89–148.

[3] F. Baader, B. Hollunder, Priorities on defaults with prerequisites, and their application in treating specificity
in terminological default logic, J. Automat. Reason. 15 (1995) 41–68.

[4] C. Baral, M. Gelfond, Logic programming and knowledge representation, J. Logic Programming 19–20
(1994) 73–148.

[5] G. Bossu, P. Siegel, Saturation, nonmonotonic reasoning and the closed world assumption, Artificial
Intelligence 25 (1995) 13–63.

[6] G. Brewka, Reasoning about priorities in default logic, in: AAAI-94, Seattle, WA, MIT Press, Cambridge,
MA, 1994, pp. 940–945.

C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222 221

[7] G. Brewka, Well-founded semantics for extended logic programs with dynamic preferences, J. Artificial
Intelligence Res. 4 (1996) 19–36.

[8] G. Brewka, T. Eiter, Preferred answer sets for extended logic programs, Artificial Intelligence 109 (1999)
297–356.

[9] F. Buccafurri, N. Leone, P. Rullo, Semantics and expressiveness of disjunctive ordered logic, Ann. Math.
Artificial Intelligence 25 (1999) 311–337.

[10] F. Buccafurri, W. Faber, N. Leone, Disjunctive logic programs with inheritance, in: Proc. 1999 International
Conference on Logic Programming, MIT Press, Cambridge, MA, 1999, pp. 79–93.

[11] J. Chen, Embedding prioritized circumscription in logic programs, in: Proc. 10th International Symposium
on Foundations of Intelligent Systems (ISMIS-97), Lecture Notes in Artificial Intelligence, Vol. 1325,
Springer, Berlin, 1997, pp. 50–59.

[12] J. Delgrande, T. Schaub, Compiling reasoning with and about preference into default logic, in: Proc. IJCAI-
97, Nagoya, Japan, Morgan Kaufmann, Los Altos, CA, 1997, pp. 168–174.

[13] Y. Dimopoulos, A.C. Kakas, Logic programming without negation as failure, in: Proc. 1995 International
Logic Programming Symposium, MIT Press, Cambridge, MA, 1995, pp. 369–383.

[14] T. Eiter, G. Gottlob, The complexity of logic-based abduction, J. ACM 42 (1995) 3–42.
[15] T. Eiter, G. Gottlob, N. Leone, Abduction from logic programs: Semantics and complexity, Theoret.

Comput. Sci. 189 (1–2) (1997) 129–177.
[16] T. Eiter, W. Faber, N. Leone, G. Pfeifer, The diagnosis front-end of the dlv system, AI Comm. 12 (1999)

99–111.
[17] D.W. Etherington, Formalizing nonmonotonic reasoning systems, Artificial Intelligence 31 (1987) 41–85.
[18] M. Gelfond, V. Lifschitz, Compiling circumscriptive theories into logic programs, in: Proc. AAAI-88, St.

Paul, MN, MIT Press, Cambridge, MA, 1988, pp. 455–459.
[19] M. Gelfond, Epistemic approach to formalization of commonsense reasoning, Technical Report TR-91-2,

University of Texas at El Paso, TX, 1991.
[20] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation

Comput. 9 (3,4) (1991) 365–385.
[21] M. Gelfond, T.C. Son, Reasoning with prioritized defaults, in: Proc. 3rd International Workshop on Logic

Programming and Knowledge Representation, Lecture Notes in Artificial Intelligence, Vol. 1471, Springer,
Berlin, 1998, pp. 164–223.

[22] G. Gottlob, Complexity results for nonmonotonic logics, J. Logic Comput. 2 (3) (1992) 397–425.
[23] B.N. Grosof, Generalizing prioritization, in: Proc. 2nd International Conference on Principles of Knowledge

Representation and Reasoning (KR-91), Cambridge, MA, Morgan Kaufmann, Los Altos, CA, 1991,
pp. 289–300.

[24] B.N. Grosof, Prioritized conflict handling for logic programs, in: Proc. 1997 International Logic
Programming Symposium, MIT Press, Cambridge, MA, 1997, pp. 197–211.

[25] K. Govindarajan, B. Jayaraman, S. Mantha, Preference logic programming, in: Proc. 12th International
Conference on Logic Programming, MIT Press, Cambridge, MA, 1995, pp. 731–745.

[26] K. Inoue, C. Sakama, Negation as failure in the head, J. Logic Program. 35 (1) (1998) 39–78. A shorter
version: On positive occurrences of negation as failure, in: Proc. 4th International Conference on Principles
of Knowledge Representation and Reasoning (KR-94), Bonn, Germany, Morgan Kaufmann, Los Altos, CA,
1994, pp. 293–304.

[27] K. Inoue, Linear resolution for consequence finding, Artificial Intelligence 56 (1992) 301–353.
[28] K. Inoue, Hypothetical reasoning in logic programs, J. Logic Programming 18 (3) (1994) 191–227.
[29] K. Inoue, C. Sakama, A fixpoint characterization of abductive logic programs, J. Logic Programming 27 (2)

(1996) 107–136. A shorter version: Transforming abductive logic programs to disjunctive programs, in:
Proc. 10th International Conference on Logic Programming, MIT Press, Cambridge, MA, 1993, pp. 335–
353.

[30] K. Inoue, C. Sakama, Abducing priorities to derive intended conclusions, in: Proc. IJCAI-99, Stockholm,
Sweden, Morgan Kaufmann, Los Altos, CA, 1999, pp. 44–49.

[31] T. Janhunen, On the intertranslatability of autoepistemic, default and priority logics, and parallel
circumscription, in: Proc. European Workshop on Logics in Artificial Intelligence (JELIA-98), Lecture
Notes in Artificial Intelligence, Vol. 1489, Springer, Berlin, 1998, pp. 216–232.

[32] A.C. Kakas, R.A. Kowalski, F. Toni, Abductive logic programming, J. Logic Comput. 2 (1992) 719–770.

222 C. Sakama, K. Inoue / Artificial Intelligence 123 (2000) 185–222

[33] R.A. Kowalski, Algorithm = Logic + Control, Comm. ACM 22 (1979) 424–435.
[34] R.A. Kowalski, F. Sadri, Logic programs with exception, New Generation Comput. 9 (3, 4) (1991) 387–400.
[35] V. Lifschitz, Computing circumscription, in: Proc. IJCAI-85, Los Angeles, CA, Morgan Kaufmann, Los

Altos, CA, 1985, pp. 121–127.
[36] V. Lifschitz, On the satisfiability of circumscription, Artificial Intelligence 28 (1986) 17–27.
[37] V. Lifschitz, T.Y.C. Woo, Answer sets in general nonmonotonic reasoning (preliminary report), in: Proc. 3rd

International Conference on Principles of Knowledge Representation and Reasoning (KR-92), Cambridge,
MA, Morgan Kaufmann, Los Altos, CA, 1992, pp. 603–614.

[38] V. Lifschitz, Minimal belief and negation as failure, Artificial Intelligence 70 (1994) 53–72.
[39] V. Lifschitz, Circumscription, in: D.M. Gabbay et al. (Eds.), Handbook of Logic in Artificial Intelligence

and Logic Programming, Vol. 3, Clarendon Press, Oxford, 1994, pp. 297–352.
[40] J.W. Lloyd, Foundations of Logic Programming, 2nd edn., Springer, Berlin, 1987.
[41] J. Lobo, J. Minker, A. Rajasekar, Foundations of Disjunctive Logic Programming, MIT Press, Cambridge,

MA, 1992.
[42] J. McCarthy, Circumscription—A form of nonmonotonic reasoning, Artificial Intelligence 13 (1980) 27–39.
[43] L.M. Pereira, J.J. Alferes, N. Aparicio, Contradiction removal within well-founded semantics, in: Proc.

1st International Workshop on Logic Programming and Nonmonotonic Reasoning, MIT Press, Cambridge,
MA, 1991, pp. 105–119.

[44] D. Poole, A logical framework for default reasoning, Artificial Intelligence 36 (1) (1988) 27–47.
[45] S. Pradhan, J. Minker, Using priorities to combine knowledge bases, J. Intelligent and Cooperative

Information Systems 5 (2, 3) (1996) 333–364.
[46] T.C. Przymusinski, On the declarative semantics of deductive databases and logic programs, in: J. Minker

(Ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, CA,
1988, pp. 193–216.

[47] T.C. Przymusinski, Stable semantics for disjunctive programs, New Generation Comput. 9 (3, 4) (1991)
401–424.

[48] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81–132.
[49] R. Reiter, G. Criscuolo, On interacting defaults, in: Proc. IJCAI-81, Vancouver, BC, Morgan Kaufmann,

Los Altos, CA, 1981, pp. 270–276.
[50] J. Rintanen, Lexicographic priorities in default logic, Artificial Intelligence 106 (1998) 221–265.
[51] Y. Shoham, Nonmonotonic logics: Meaning and utility, in: Proc. IJCAI-87, Milan, Italy, Morgan Kaufmann,

Los Altos, CA, 1987, pp. 388–393.
[52] C. Sakama, K. Inoue, Embedding circumscriptive theories in general disjunctive programs, in: Proc. 3rd

International Conference on Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Artificial
Intelligence, Vol. 928, Springer, Berlin, 1995, pp. 344–357.

[53] C. Sakama, K. Inoue, Representing priorities in logic programs, in: Proc. 1996 Joint International
Conference and Symposium on Logic Programming, MIT Press, Cambridge, MA, 1996, pp. 82–96.

[54] M.E. Stickel, Rationale and methods for abductive reasoning in natural-language interpretation, in: Proc.
International Scientific Symposium on Natural Language and Logic, Lecture Notes in Artificial Intelligence,
Vol. 459, Springer, Berlin, 1989, pp. 233–252.

[55] T. Wakaki, K. Satoh, Compiling prioritized circumscription into extended logic programs, in: Proc. IJCAI-
97, Nagoya, Japan, Morgan Kaufmann, Los Altos, CA, 1997, pp. 182–187.

[56] X. Wang, J.-H. You, L.-Y. Yuan, Nonmonotonic reasoning by monotonic inferences with priority constraints,
in: Proc. 2nd International Workshop on Nonmonotonic Extensions of Logic Programming, Lecture Notes
in Artificial Intelligence, Vol. 1216, Springer, Berlin, 1996, pp. 91–109.

[57] Y. Zang, N. Foo, Answer sets for prioritized logic programs, in: Proc. 1997 International Logic Symposium,
MIT Press, Cambridge, MA, 1997, pp. 69–83.

[58] Y. Zang, N. Foo, Updating logic programs, in: Proc. 13th European Conference on Artificial Intelligence,
Wiley, Chichester, UK, 1998, pp. 403–407.

