
Can Machines Learn Logics?

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
inoue@nii.ac.jp

Abstract. This paper argues the possibility of designing AI that can learn logics
from data. We provide an abstract framework for learning logics. In this frame-
work, an agent A provides training examples that consist of formulas S and their
logical consequences T . Then a machine M builds an axiomatic system that un-
derlies between S and T . Alternatively, in the absence of an agent A, the machine
M seeks an unknown logic underlying given data. We next provide two cases
of learning logics: the first case considers learning deductive inference rules in
propositional logic, and the second case considers learning transition rules in cel-
lular automata. Each case study uses machine learning techniques together with
metalogic programming.

1 Introduction

Logic-based AI systems perform logical inferences to get solutions given input for-
mulas. Such systems have been developed in the field of automated theorem proving
or logic programming [10]. In those systems, however, a logic used in the system is
specified and built-in by human engineers. Our question in this paper is whether it is
possible to develop artificial (general) intelligence that automatically produces a logic
underlying any given data set.

In his argument on “learning machines” in [14], Alan Turing wrote:

Instead of trying to produce a programme to simulate the adult mind, why
not rather try to produce one which simulates the child’s? If this were then
subjected to an appropriate course of education one would obtain the adult
brain [14, p. 456].

According to Piaget’s theory of cognitive development, children begin to understand
logical or rational thought at age around seven [12]. If one can develop AI that au-
tomatically acquires a logic of human reasoning, it verifies Turing’s assumption that
a child’s brain can grow into an adult’s one by learning an appropriate logic. Recent
advances in robotics argue possibilities of robots’ recognizing objects in the world, cat-
egorizing concepts, and associating names to them (physical symbol grounding) [3].
Once robots successfully learn concepts and associate symbols to them, the next step is
to learn relations between concepts and logical or physical rules governing the world.



In this study, we will capture learning logics as a problem of inductive learning.
According to [9], “(t)he goal of (inductive) inference is to formulate plausible general
assertions that explain the given facts and are able to predict new facts. In other words,
inductive inference attempts to derive a complete and correct description of a given
phenomenon from specific observations of that phenomenon or of parts of it” [9, p. 88].
A logic provides a set of axioms and inference rules that underlie sentences representing
the world. Then given a set of sentences representing the world, one could inductively
construct a logic governing the world. This is in fact a work for mathematicians who
try to find an axiomatic system that is sound and complete with respect to a given set
of theorems. Induction has been used as an inference mechanism of machine learning,
while little study has been devoted to the challenging topic of learning logics.

In this paper, we first describe an abstract framework for learning logics based on
inductive learning. Next we provide two simple case studies: learning deductive infer-
ence rules and learning cellular automata (CAs) rules. In the former case, the problem
of producing deductive inference rules from formulas and their logical consequences
is considered. In the second case, the problem of producing transition rules from CA
configurations is considered. In each case, we use machine learning techniques together
with metalogic programming. The rest of this paper is organized as follows. Section 2
introduces an abstract framework for learning logics. Section 3 presents a case of learn-
ing deductive inference rules and Section 4 presents a case of learning CA rules. Sec-
tion 5 discusses further issues and Section 6 summarizes the paper.

2 Learning Logics

To consider the question “Can machines learn logics?”, suppose the following prob-
lem. There is an agent A and a machine M. The agent A, which could be a human
or a computer, is capable of deductive reasoning: it has a set L of axioms and infer-
ence rules in classical logic. Given a (finite) set S of formulas as an input, the agent A
produces a (finite) set of formulas T such that T ⊂ Th(S) where Th(S) is the set of
logical consequences of S. On the other hand, the machineM has no axiomatic system
for deduction, while it is equipped with a machine learning algorithm C. Given input-
output pairs (S1, T1), . . . , (Si, Ti), . . . (where Ti ⊂ Th(Si)) of A as an input to M,
the problem is whether one can develop an algorithm C which successfully produces
an axiomatic system K for deduction. An algorithm C is sound wrt L if it produces an
axiomatic system K such that K ⊆ L. An algorithm C is complete wrt L if it produces
an axiomatic system K such that L ⊆ K. Designing a sound and complete algorithm C
is called a problem of learning logics (Figure 1). In this framework, an agent A plays
the role of a teacher who provides training examples representing premises along with
entailed consequences. The output K is refined by incrementally providing examples.
We consider a deduction system L while it could be a system of arbitrary logic, e.g.
nonmonotonic logic, modal logic, fuzzy logic, as far as it has a formal system of infer-
ence. Alternatively, we can consider a framework in which a teacher agent A is absent.
In this case, given input-output pairs (Si, Ti) as data, the problem is whether a machine
M can find an unknown logic (or axiomatic system) that produces a consequence Ti

from a premise Si.



Input Agent A

Si
� deduction

system L �

Output

Ti (⊂ Th(Si))

��
Input Machine M

(Si, Ti)
� learning

system C �

Output

K

Fig. 1. Learning Logics

The abstract framework provided in this section has challenging issues of AI in-
cluding the questions:

1. Can we develop a sound and complete algorithm C for learning a classical or non-
classical logic L?

2. Is there any difference between learning axioms and learning inference rules?
3. Does a machineM discover a new axiomatic system K such that K � F iff L � F

for any formula F?

The first question concerns the possibility of designing machine learning algorithms that
can learn existing logics from given formulas. The second question concerns differences
between learning Gentzen-style logics and Hilbert-style logics. The third question is
more ambitious: it asks the possibility of AI’s discovering new logics that are unknown
to human mathematicians.

In this paper, we provide simple case studies concerning the first question. To
this end, we represent a formal system L using metalogic programming which allows
object-level and meta-level representation to be amalgamated [2].

3 Learning Deductive Inference Rules

The preceding section provided an abstract framework for learning logics. This section
considers a simple case of the problem. Suppose a set S of atomic formulas which
contains atoms with the predicate hold. Each atom in S is in the form hold(F ) where
F is a formula in propositional logic. Hence, hold is a meta-predicate, hold(F ) is a
meta-atom, while F is an object-level formula. A rule has the form:

A← Γ (1)

where A is a meta-atom and Γ is a conjunction of meta-atoms. Given a rule R of the
form (1), A is called the head of R and Γ is called the body of R. The atom A is also
represented by head(R) and the set of atoms in Γ is represented by body(R). In what
follows, a meta-predicate or a meta-atom is simply called a predicate or an atom, and



an object-level formula is called a formula as far as no confusion arises. We consider
an agent A with an inference system L that performs the following inference:

from hold(p) and hold(p ⊃ q) infer hold(q)

where p and q are propositional variables. In this case, given a finite set S of atoms as
an input, A outputs the set:

T = S ∪ {hold(q) | hold(p) ∈ S and hold(p ⊃ q) ∈ S }.

We now consider the machineM that can produce deductive inference rules from
S and T as follows. Given each pair (S, T ) as an input, we first consider a learning
system C which constructs a rule:

A←
∧

Bi∈S

Bi (2)

where A ∈ T \S. The rule (2) represents that an atom A in T \S is derived using atoms
in S. For example, given the set:

S = {hold(p), hold(r), hold(p ⊃ q), hold(p ⊃ r), hold(r ⊃ s) },

two atoms hold(q) and hold(s) are in T \ S. Then the following two rules are con-
structed by (2):

hold(q)← hold(p) ∧ hold(r) ∧ hold(p ⊃ q) ∧ hold(p ⊃ r) ∧ hold(r ⊃ s).

hold(s)← hold(p) ∧ hold(r) ∧ hold(p ⊃ q) ∧ hold(p ⊃ r) ∧ hold(r ⊃ s).

The body of each rule contains atoms which do not contribute to deriving the atom in
the head. To distinguish atoms which contribute to deriving the consequence, the agent
A is used as follows. For a pair (S, T ) from A such that T \ S 
= ∅, assume that a rule
R of the form (2) is constructed. Then, select a subset Si of S and give it as an input to
A. If its output Ti still contains the atom A of head(R), replace R with

A←
∧

Bi∈Si

Bi.

By continuing this process, find a minimal set Sj satisfying A ∈ Tj . Such Sj contains
atoms that are necessary and sufficient for deriving atoms in Tj \ Sj . In the above
example, there is the unique minimal set:

S1 = {hold(p), hold(p ⊃ q) }

that satisfies hold(q) ∈ T1, and there are two minimal sets that contain the atom hold(s)
in their outputs:

S2 = {hold(r), hold(r ⊃ s) },
S3 = {hold(p), hold(p ⊃ r), hold(r ⊃ s) }.



Then the following three rules are obtained by replacing S with Si in (2):

hold(q)← hold(p) ∧ hold(p ⊃ q). (3)
hold(s)← hold(r) ∧ hold(r ⊃ s). (4)
hold(s)← hold(p) ∧ hold(p ⊃ r) ∧ hold(r ⊃ s). (5)

The rules (3) and (4) represent Modus Ponens, and (5) represents Multiple Modus Po-
nens. As such, unnecessary atoms in the body of a rule are eliminated by the minimiza-
tion technique.

Unnecessary atoms in the bodies are also eliminated using the generalization tech-
nique developed in [5].3 Suppose an agent A with an inference system L that performs
the following inference:

from hold(p ∨ q) and hold(¬q) infer hold(p).

In this case, given a finite set S of atoms as an input, A outputs the set:

T = S ∪ {hold(p) | hold(p ∨ q) ∈ S and hold(¬q) ∈ S }.

Given a sequence of input-output pairs from the agent A, the machineM constructs a
rule R of the form (2) each time it receives a new pair (Si, Ti) from A. Suppose two
rules R and R′ such that (i) head(R) = head(R′); (ii) there is a formula F such that
hold(F ) ∈ body(R) and hold(¬F ) ∈ body(R′); and (iii) (body(R′) \ {hold(¬F )}) ⊆
(body(R) \ {hold(F )}). Then, a generalized rule of R and R′ (upon F ) is obtained as

A←
∧

Bi∈(body(R)\{hold(F )})
Bi.

For example, given the two pairs, (S1, T1) and (S2, T2), where

S1 = {hold(p ∨ q), hold(¬q), hold(r) },
T1 = {hold(p ∨ q), hold(¬q), hold(r), hold(p) },
S2 = {hold(p ∨ q), hold(¬q), hold(¬r) },
T2 = {hold(p ∨ q), hold(¬q), hold(¬r), hold(p) },

the two rules are obtained as:

hold(p)← hold(p ∨ q) ∧ hold(¬q) ∧ hold(r),

hold(p)← hold(p ∨ q) ∧ hold(¬q) ∧ hold(¬r).

Then the generalization of them is:

hold(p)← hold(p ∨ q) ∧ hold(¬q).

This rule represents Disjunctive Syllogism.
3 The technique is used for a logic with the law of excluded middle.



These procedures are applicable to learning one-step deduction rules such that

hold(¬p)← hold(¬q) ∧ hold(p ⊃ q). (Modus Tollens)
hold(p ⊃ r)← hold(p ⊃ q) ∧ hold(q ⊃ r). (Hypothetical Syllogism)

We can also obtain a rule for abductive inference [11] by this method. For example,
given the pair (S, T ) = ({hold(q), hold(p ⊃ q)}, {hold(q), hold(p ⊃ q), hold(p)}),
we can construct the Fallacy of Affirming the Consequent:

hold(p)← hold(q) ∧ hold(p ⊃ q).

In this way, the method in this section could be used for learning non-deductive infer-
ences.

4 Learning CA Rules

In this section, we address another example of learning logics. Cellular automata (CAs)
[15] are discrete and abstract computational models that have been used for simulating
various complex systems in the real world. A CA consists of a regular grid of cells,
each of which has a finite number of possible states. The state of each cell changes
synchronously in discrete time steps (or generations) according to a local and identical
transition rule. The state of a cell in the next time step is determined by its current
state and the states of its surrounding cells (called neighbors). The collection of all
cellular states in the grid at some time step is called a configuration. An elementary
CA consists of a one-dimensional array of (possibly infinite) cells, and each cell has
one of two possible states 0 or 1. A cell and its two adjacent cells form a neighbor
of three cells, so there are 23 = 8 possible patterns for neighbors. A transition rule
describes for each pattern of a neighbor, whether the central cell will be 0 or 1 at the
next time step. Then 28 = 256 possible rules are considered and 256 elementary CAs
are defined accordingly. Stephen Wolfram gave each rule a number 0 to 255 (called the
Wolfram code), and analyzed their properties [15]. The evolution of an elementary CA
is illustrated by starting with the initial configuration in the first row, the configuration
at the next time step in the second row, and so on. Figure 2 shows the Rule 30 and one of
its evolution where the black cell represents the state 1 and the white cell represents the
state 0. The figure shows the first 16 generations of the Rule 30 starting with a single
black cell. It is known that the Rule 30 displays aperiodic and random patterns in a
chaotic manner.

Each transition rule is considered a logic of CA, that is, every pattern appearing
in a configuration is governed by one transition rule. Then we consider the problem
of producing a transition rule from input configurations. Such a problem is known as
the identification problem of CAs [1]. In what follows, we consider the problem of
learning the Wolfram’s Rule 30 from a series of configurations. In an elementary CA,
a configuration at a time step t is represented by a (possibly infinite) sequence of cells
〈 · · · xt

i−1 x
t
i x

t
i+1 · · · 〉 where xt

i represents a state of a cell xi at a time step t. For
example, the initial configuration of Figure 2 is represented by

〈 · · · x0
i−1 x

0
i x

0
i+1 · · · 〉 = 〈 · · · 010 · · · 〉



Fig. 2. Evolution of patterns by the Rule 30

Table 1. Evolution of 〈xt
i−2 x

t
i−1 x

t
i x

t
i+1 x

t
i+2 〉

step xt
i−2 xt

i−1 xt
i xt

i+1 xt
i+2

t=0 0 0 1 0 0
t=1 0 1 1 1 0
t=2 1 1 0 0 1
t=3 1 0 1 1 1

where the central black cell at the time step 0 is represented by x0
i = 1. Likewise, the

configuration at the time step 2 is represented by

〈 · · · x2
i−3 x

2
i−2 x

2
i−1 x

2
i x

2
i+1 x

2
i+2 x

2
i+3 · · · 〉 = 〈 · · · 0110010 · · · 〉.

We represent the state of a cell at each time step by an atom as: hold(xt
i) if xt

i = 1
and hold(¬xt

i) if xt
i = 0. Then the initial configuration of Figure 2 is represented by

the (infinite) set of atoms:

{. . . , hold(¬x0
i−1), hold(x

0
i ), hold(¬x0

i+1), . . .}.

To cope with the problem using a finite set, we consider the five cells:

St = 〈xt
i−2 x

t
i−1 x

t
i x

t
i+1 x

t
i+2 〉

in each time step. Table 1 represents evolution of those five cells in the first four time
steps.

Corresponding to the framework provided in Section 2, an agent A produces St+1

from an input St. Given input-output pairs (S0, S1), . . . , (St, St+1), . . . of A as an
input to a machine M, the problem is whether M can identify the transition rule of
this CA. For a pair of configurations (S0, S1), the machineM produces a rule R that
represents the states of the cell x0

j (i− 1 ≤ j ≤ i+ 1) and its neighbors in the body of



R and represents the state of the cell x1
j in the head of R. There are three such rules:

hold(x1
i−1)← hold(¬x0

i−2) ∧ hold(¬x0
i−1) ∧ hold(x0

i ).

hold(x1
i )← hold(¬x0

i−1) ∧ hold(x0
i ) ∧ hold(¬x0

i+1).

hold(x1
i+1)← hold(x0

i ) ∧ hold(¬x0
i+1) ∧ hold(¬x0

i+2).

Similarly, given a pair of configurations (S1, S2), the machineM produces the follow-
ing three rules:

hold(x2
i−1)← hold(¬x1

i−2) ∧ hold(x1
i−1) ∧ hold(x1

i ).

hold(¬x2
i )← hold(x1

i−1) ∧ hold(x1
i ) ∧ hold(x1

i+1).

hold(¬x2
i+1)← hold(x1

i ) ∧ hold(x1
i+1) ∧ hold(¬x1

i+2).

The following two rules are respectively obtained by (S3, S4) and (S6, S7):

hold(¬x4
i−1)← hold(x3

i−2) ∧ hold(¬x3
i−1) ∧ hold(x3

i ).

hold(¬x7
i )← hold(¬x6

i−1) ∧ hold(¬x6
i ) ∧ hold(¬x6

i+1).

Since a transition rule does not change during the evolution and it is equally applied
to each cell, the above eight rules are rewritten as

hold(xt+1
i )← hold(¬xt

i−1) ∧ hold(¬xt
i) ∧ hold(xt

i+1). (6)

hold(xt+1
i )← hold(¬xt

i−1) ∧ hold(xt
i) ∧ hold(¬xt

i+1). (7)

hold(xt+1
i )← hold(xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1). (8)

hold(xt+1
i )← hold(¬xt

i−1) ∧ hold(xt
i) ∧ hold(xt

i+1). (9)

hold(¬xt+1
i )← hold(xt

i−1) ∧ hold(xt
i) ∧ hold(xt

i+1). (10)

hold(¬xt+1
i )← hold(xt

i−1) ∧ hold(xt
i) ∧ hold(¬xt+1

i+1). (11)

hold(¬xt+1
i )← hold(xt

i−1) ∧ hold(¬xt
i) ∧ hold(xt

i+1). (12)

hold(¬xt+1
i )← hold(¬xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1). (13)

The eight rules (6)–(13) represent the transition rule of the Rule 30. Further, we get the
following rules:

hold(xt+1
i )← hold(¬xt

i−1) ∧ hold(xt
i). (by (7) and (9))

hold(xt+1
i )← hold(¬xt

i−1) ∧ hold(xt
i+1). (by (6) and (9))

hold(¬xt+1
i )← hold(xt

i−1) ∧ hold(xt
i). (by (10) and (11))

hold(¬xt+1
i )← hold(xt

i−1) ∧ hold(xt
i+1). (by (10) and (12))

Those rules are finally summarized as:

hold(xt+1
i )← (hold(xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1))

∨ (hold(¬xt
i−1) ∧ (hold(xt

i) ∨ hold(xt
i+1))). (14)

hold(¬xt+1
i )← (hold(¬xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1))

∨ (hold(xt
i−1) ∧ (hold(xt

i) ∨ hold(xt
i+1))). (15)



The rules (14) and (15) represent the Wolfram’s Rule 30.
Learning elementary CA rules is implemented in [5]. Learning elementary CA rules

is simple because it is one-dimensional, two-state, and has the fixed neighborhood size.
On the other hand, identifying CA rules in practice is difficult because configurations
are observed phenomena in the real-world and there is no teacher agent A in general.

5 Discussion

This paper argues the possibility of discovering logics using AI. Logic is considered as
meta-mathematics here, so the task is to find meta-laws given pairs of premises and con-
sequences in mathematical or physical domain. On the other hand, discovering math-
ematical theorems or scientific laws in the objective theories has been studied in AI.
For instance, Lenat [7] develops the automated mathematician (AM) that automatically
produces mathematical theorems including Goldbach’s Conjecture and the Unique Fac-
torization Theorem. Schmidt and Lipson [13] develop AI that successfully deduces the
laws of motion from a pendulum’s swings without a shred of knowledge about physics
or geometry. To the best of our knowledge, however, there are few studies that aim at
discovering logics or meta-theorems.

In Section 2 we address an abstract framework of learning formal systems based
on logics. An interesting question is whether the same or a similar framework can be
applied for learning non-logical systems. In this case, a set of input-output pairs (or
premise-consequence pairs) are not given from a teacher agent A in general, but can be
implicitly hidden in log files of dynamic systems or in dialogues with unknown agents.
The machineM has to identify those input-output relations automatically to output a set
of meta-theoretical inference rules for the domain or inference patterns of those agents.
Non-logical inferences are also used in pragmatics [8]. In conversation or dialogue, the
notion of conversational implicature [4] is known as a pragmatic inference to an im-
plicit meaning of a sentence that is not actually uttered by a speaker. For instance, if a
speaker utters the sentence “I have two children”, it normally implicates “I do not have
more than two children”. This is called a scalar implicature which says that a speaker
implicates the negation of a semantically stronger proposition than the one asserted.
Given a collection of dialogues, a question is whether a machine can automatically
acquire pragmatic rules of inference that interpret implicit meaning behind utterance.
Once such a non-logical inference is learned, it must be refined or revised through a
continuous, cyclic process between evidences and abduction on meta-theoretical rela-
tions [6]. The process would thus introduce a dynamics of incremental perfection of
theories. To realize such a system, further extension and elaboration of the framework
provided in this paper are needed and much work are left for future research.

6 Summary

Answering the question “can machines learn logics?” is one of the challenging topics
in artificial general intelligence. We argued the possibility of realizing such AI and
provided some case studies. A number of questions remain open, for instance, whether
the goal is achieved using existing techniques of machine learning or AI; which logics



are to be learned and which logics are not; whether non-logical rules are learned as well,
etc. Exploring those issues would contribute to better understanding human intelligence
and take us one step closer to realizing “strong AI.” Although the abstract framework
provided in this paper is conceptual and case studies are rather simple, the current study
serves as a kind of base-level and would contribute to opening the topic.

References

1. A. Adamatzky. Identification of Cellular Automata. Taylor& Francis, London (1994).
2. K. A. Bowen and R. A. Kowalski. Amalgamating language and metalanguage in logic pro-

gramming. In: K. Clark & S. A. Tarnlund (eds.), Logic Programming, pp. 153–172, Academic
Press (1983).

3. S. Coradeschi, A. Loutfi and B. Wrede. A short review of symbol grounding in robotic and
intelligent systems. KI - Kunstliche Intelligenz, 27(2):129–136 (2013).

4. H. P. Grice. Logic and conversation. In: P. Cole & J. Morgan (eds.), Syntax and Semantics, 3:
Speech Acts, pp. 41–58, Academic Press (1975).

5. K. Inoue, T. Ribeiro and C. Sakama. Learning from interpretation transition. Machine Learn-
ing, 94(1):51–79 (2014).

6. K. Inoue. Meta-level abduction. IFCoLog Journal of Logic and their Applications (in print)
(2015).

7. D. B. Lenat. On automated scientific theory formation: a case study using the AM program.
In: J. E. Hayes, D. Michie and O. I. Mikulich (eds.), Machine Intelligence 9, Ellis Horwood,
pp. 251–283 (1979).

8. S. C. Levinson. Pragmatics, Cambridge University Press (1983).
9. R. S. Michalski. A theory and methodology of inductive learning. In: R. S. Michalski et al.

(eds.), Machine Learning: An Artificial Intelligence Approach. pp. 83–134, Morgan Kaufmann
(1983).

10. J. Minker (ed.). Logic-based Artificial Intelligence. Kluwer Academic (2000).
11. C. S. Peirce. Elements of Logic. In: C. Hartshorne and P. Weiss (eds.), Collected Papers of

Charles Sanders Peirce, Volume II, Harvard University Press (1932).
12. J. Piaget. Main Trends in Psychology. London: Allen & Unwin (1973).
13. M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science

324, April (2009).
14. A. M. Turing. Computing machinery and intelligence. Mind 59:433–460 (1950).
15. S. Wolfram. Cellular Automata and Complexity. Westview Press (1994).


