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Abstract. This chapter introduces new techniques called abductive generalization
and abductive specialization in logic programs. Abductive generalization enables us
to abduce not only specific facts but general rules accounting for positive observa-
tions. It is achieved by generalizing abductive explanations and incorporating them
in a knowledge base. On the other hand, abductive specialization refines a knowl-
edge base to recover consistency wrt negative observations. It is done by abductively
finding the sources of inconsistency and specializing them with additional abduc-
tive hypotheses. A unique feature of our approach is that each procedure computes
inductive generalization and specialization through abduction. The proposed tech-
niques introduce learning ability to abduction and also realize efficient computation
of induction.

1. Introduction

Abduction and induction both generate hypotheses to explain observed
phenomena in an incomplete knowledge base, while they are distin-
guished in the following aspects. Abduction conjectures specific facts
accounting for some particular observation. Those assumptions of facts
are extracted using causal relations in the background knowledge base.
As there are generally many possible facts which may imply the obser-
vation, candidates for hypotheses are usually pre-specified as abducibles.
Then, the task is finding the best explanations from those candidates.
By contrast, induction seeks regularities underlying the observed phe-
nomena. The goal is not only explaining the current observations but
discovering new knowledge for future usage. Hence induced hypothe-
ses are general rules rather than specific facts. In constructing general
rules, some constraints called biases are often used but candidates for
hypotheses are not usually given in advance. The task is then forming
new hypotheses using information in the background knowledge base.

Comparing two reasonings, abduction can compute explanations ef-
ficiently by specifying possible hypotheses in advance. Induction has a
reasoning ability higher than abduction in the sense that it can produce
new hypotheses. However, the computation of hypotheses will require
a large search space and it is generally expensive. Thus abduction and
induction have a trade-off between reasoning abilities and computa-
tional costs. Then, integrating two paradigms and taking advantages
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of each framework will provide a powerful methodology for hypotheti-
cal reasoning. Moreover, such transfers of techniques will benefit both
abduction and induction. In abduction, introducing a mechanism of
abducing not only facts but general rules will enhance the reasoning
ability of abduction. In induction, on the other hand, it is provided a
method of computing general rules abductively, which will make induc-
tion feasible.

In this chapter we propose new techniques called abductive gener-
alization and abductive specialization. Abductive generalization pro-
vides a mechanism of abducing not only specific facts but general rules
accounting for positive observations. It is achieved by computing ab-
ductive explanations and extending a knowledge base with generalized
explanations. On the other hand, when a knowledge base is incon-
sistent with negative observations, abductive specialization refines a
knowledge base to recover consistency. It is done by abductively find-
ing the sources of inconsistency and specializing a knowledge base with
additional abductive hypotheses. Abductive generalization and special-
ization provide methods for computing inductive hypotheses through
abduction, thus contribute to a step of integrating abduction and in-
duction in AI.

This chapter is organized as follows. Section 2 introduces an ab-
ductive framework used in this chapter. Section 3 presents a method of
abductive generalization, and Section 4 provides a method of abductive
specialization. Section 5 discusses related work and Section 6 concludes
the chapter.

2. Preliminaries

2.1. Extended abduction

In this chapter we use an extended framework of abduction which is
proposed by (Inoue and Sakama, 1995). 1

A knowledge base K is a set of definite clauses

H ← B1, . . . , Bn

where H and Bi (1 ≤ i ≤ n) are atoms. The atom H is the head and
the conjunction B1, . . . , Bn is the body of the clause. A clause with an
empty body H ← is called a fact. Each fact H ← is identified with
the atom H. A conjunction in the body is identified with the set of

1 In (Inoue and Sakama, 1995) the framework is introduced for nonmonotonic
theories. Here we use it for definite Horn theories with multiple observations.
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atoms included in it. A clause (atom, literal) is ground if it contains no
variable. Given a knowledge baseK, a set of atoms A from the language
of K is called abducibles. Abducibles specify a set of hypothetical facts.
Any instance A of an element from A is also called an abducible and is
written as A ∈ A. Given a knowledge base K, its associated abducibles
A are often omitted when their existence is clear from the context.

Let O be a set of ground literals. Each positive literal in O represents
a positive observation, while each negative literal in O represents a
negative observation. A positive observation presents an evidence that
is known to be true, while a negative observation presents an evidence
that is known to be false. An individual positive/negative observation is
written by O+/O−, and the set of positive/negative observations from
O is written by O+/O−, respectively.

Given a knowledge base K with abducibles A, and observations O,
a pair of sets of atoms (E,F ) is an explanation of O in K if it satisfies
the following conditions:

1. (K ∪ E) \ F |= O+ for every O+ ∈ O+,

2. (K ∪ E) \ F ∪ O− is consistent,

3. both E and F consist of ground instances of elements from A.

That is, a knowledge base (K∪E)\F derives every positive observation
and is consistent with every negative observation.2 It should be noted
that in this extended framework hypotheses can not only be added to
a knowledge base but also be discarded from it to explain observations.
When O+ contains a single observation and O− and F are empty,
the above definition reduces to the traditional logical framework of
abduction addressed by Flach and Kakas in the introduction of this
volume.

An explanation (E,F ) is minimal if for any explanation (E′, F ′),
E′ ⊆ E and F ′ ⊆ F imply E′ = E and F ′ = F . It holds that E∩F = ∅
for any minimal explanation (E,F ). In this chapter explanations mean
minimal explanations unless stated otherwise.

EXAMPLE 2.1. Let K be the knowledge base

driving(x)← licensed(x), has-car(x),

licensed(John)←, licensed(Mary)←,

has-car(John)←
2 In (Inoue and Sakama, 1995), explanations for a negative observation are called

anti-explanations.
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withA = { licensed(x), has-car(x) }. Suppose we observe thatMary is
driving but John is not these days. The situation is represented as the
set of observations O = { driving(Mary), ¬ driving(John) }. Then,
O+ = driving(Mary) is explained by assuming has-car(Mary), i.e.,
she got a car. On the other hand, O− = ¬ driving(John) is explained
by removing either has-car(John) or licensed(John) from K, i.e., he
lost his car or license for some reason. As a result, O has two alterna-
tive explanations: (E,F )=({has-car(Mary) },{has-car(John) }) and
({has-car(Mary) }, { licensed(John) }).

2.2. Our goal

In extended abduction both positive and negative observations are ex-
plained by introducing/removing hypotheses to/from a knowledge base.
However, explanations are still selected from the pre-specified abducible
facts and no new rules are constructed like induction. Our goal in this
chapter is to bridge the gap between abduction and induction, and to
provide a method for abducing new rules which explain observations.
The problem is formally stated as follows.

Given a knowledge baseK (with abduciblesA) and positive/negative
observations O, abduce a new knowledge base K∗ such that

1. K∗ |= O+ for every O+ ∈ O+,

2. K∗ ∪ O− is consistent.

To obtain K∗ we use techniques for inductive generalization and spe-
cialization.

3. Generalizing knowledge bases through abduction

3.1. Abductive generalization

This section considers knowledge bases in which only positive obser-
vations are available. Since we consider monotonic definite theories,
removing facts from a knowledge base does not increase proven facts.
Hence, whenever a positive observation has an explanation (E,F ), F
is empty. Thus, an explanation (E, ∅) is simply written as E in this
section.

EXAMPLE 3.1. One can make a profit if he/she buys a stock and the
stock price goes up. Now there are four persons a, b, c, d, and each one
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bought a stock e, f , g, h, respectively. The situation is represented as

K1 : profit(x)← stock(x, y), up(y),

stock(a, e)←, stock(b, f)←,

stock(c, g)←, stock(d, h)← .

Suppose that abducibles are specified as A = { stock(x, y), up(y) }.
Then, given the set of positive observations

O+ = { profit(a), profit(b), profit(c) },
abduction computes the explanation

E = {up(e), up(f), up(g) }.

Thus, abduction makes each observation derivable by introducing E
to K1. On the other hand, the observations present that every person
except d has already made a profit. Then, one may consider that the
market is rising and d will also make a profit. In this case, one can
assume the optimistic rule

profit(x)← stock(x, y),

rather than computing similar explanations for each observation. This
inference is an inductive generalization, which is obtained from the
original rule by dropping conditions (Michalski, 1983).

Our goal in this section is to compute such inductive generalization
through abduction. That is, given a knowledge base and positive obser-
vations, we produce a generalized knowledge base which explains the
observations.

Some terminologies are introduced from (Plotkin, 1970). Two atoms
are compatible if they have the same predicate and the same number
of arguments. Let S be a set of compatible atoms. For A1, A2 ∈ S, A1

is more general than A2 (written A1 ≤ A2) if A1θ = A2 with some
substitution θ. An atom A is a least generalization3 of S if (i) A ≤ Ai

for every Ai ∈ S, and (ii) if Aj ≤ Ai holds for every Ai ∈ S, then
Aj ≤ A. If A and A′ are two least generalizations of S, A and A′ are
alphabetic variants. Given a set of atoms S, consider a decomposition
S = S1∪· · ·∪Sk where each Si is a set of compatible atoms and no two
atoms A ∈ Si and B ∈ Sj (i 	= j) are compatible. When an atom A is a
least generalization of Si, it is written as lg(Si) = {A }. Then, the least
generalization lg(S) of S is defined as lg(S) = lg(S1) ∪ · · · ∪ lg(Sk).

3 In ILP literature, it is also called a least general generalization. But we use the
term from (Plotkin, 1970) in this chapter.
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DEFINITION 3.1. Let K be a knowledge base and O+ a set of posi-
tive observations. Then the following procedure computes an abductive
generalization K+ of K wrt. O+. First, put K+ = K.

1. Compute an explanation E ofO+ and its least generalization lg(E).

2. For any clause C from K+ whose body has atoms unifiable with
atoms in lg(E), produce a new clause C+ by resolving C with lg(E)
on every such atom.4

3. If C+θ ⊆ C holds for some substitution θ, replace C by C+ in K+.
Otherwise, add C+ to K+.

The procedure consists of two generalization processes. The first one
is the generalization of abduced explanations, and the second one is the
generalization of a knowledge base. Abductive generalization weakens
the conditions of existing clauses by the least generalization of the
abduced explanations. The knowledge base K+ is also an inductive
generalization of K, which explains the observations O+.

EXAMPLE 3.2. In Example 3.1, the least generalization of E is lg(E) =
{up(y) }. As the clause C1 : profit(x) ← stock(x, y), up(y) contains
the atom up(y), resolving C1 with up(y) produces the clause

C+
1 : profit(x)← stock(x, y).

Since the original clause C1 is subsumed by the produced clause C+
1 ,

K+
1 is obtained from K1 by replacing C1 with C+

1 :

K+
1 : profit(x)← stock(x, y),

stock(a, e)←, stock(b, f)←,

stock(c, g)←, stock(d, h)← .

A generalized knowledge base K+ is also considered as a theory
which is obtained from K by partial evaluation with respect to abduced
explanations. That is, instead of explicitly introducing abductive hy-
potheses to a knowledge base, corresponding hypotheses are implicitly
incorporated in their general forms. As a result, each observation is
derived from K+ without introducing the abduced explanation E.

THEOREM 3.1. Let K be a knowledge base, O+ a set of positive ob-
servations, and E an explanation of O+. Then, for any ground atom
A such that A 	∈ E, K ∪ E |= A implies K+ |= A.

4 Resolving C with lg(E) means resolution between C and an atom in lg(E).
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Proof. Let us identify knowledge bases K ∪ E and K+ with their
ground instances. Then, any ground clause H ← B from K such that
B ∩ E 	= ∅ is transformed to a ground clause H ← B′ in K+ where
B′ = B \ E. Hence, K ∪ E |= H implies K+ |= H. Therefore, any
ground atom A s.t. A 	∈ E, which is derived from K ∪E, is also derived
from K+.

When A ∈ E, the relation K ∪ E |= A does not necessarily imply
K+ |= A. This is because K+ may have no clause defining A.

COROLLARY 3.2. For any O+ ∈ O+, K ∪ E |= O+ and O+ 	∈ E
imply K+ |= O+.

Proof. The result follows from Theorem 3.1.

By Theorem 3.1, any fact which is not in an explanation and is
derived from the prior knowledge base together with the explanation,
is also derived from the generalized knowledge base. This is especially
the case for observations (Corollary 3.2). Note that since we consider
minimal explanations, O+ ∈ E implies E = O+. In this case, O+ is
explained by itself and K+ does not necessarily entail O+ in such a
trivial case.

The converse of Theorem 3.1 or Corollary 3.2 does not hold in gen-
eral. Indeed, K+ possibly derives facts that are not derived from K∪E.
For instance, in Example 3.2, profit(d) is derived from K+

1 but not
from K1 ∪E. Such an increase of proven facts other than observations
is called an inductive leap, which is a feature of inductive generalization.

3.2. Some remarks on abductive generalization

Abductive generalization introduces an inductive mechanism to abduc-
tion by constructing general rules which explain observations. From in-
duction viewpoint, generalization K+ is computed by modifying exist-
ing clauses in the background knowledge base K. Restricting dropping
atoms to abducibles is a kind of bias, which reduces the number of pos-
sible generalization. Dropping abducibles is also semantically justified,
since any rule containing hypotheses is considered incomplete and is
subject to change.

The reliability of abductive generalization increases in proportion
to the number of (compatible) positive observations. When O+ does
not have more than one compatible observation, the procedure gen-
eralizes a knowledge base to the smallest extent. For example, if the
single observation O+ = { profit(a) } is given to K1 of Example 3.1,
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its explanation is E = {up(e) }. In this case lg(E) = E, and resolving
C1 : profit(x)← stock(x, y), up(y) with lg(E) produces the clause

C+
1′ : profit(x)← stock(x, e),

which presents that one can make a profit if he/she buys the stock e.
Since C+

1′ does not subsume the original clause C1, it is just added to

K1 and abductive generalization produces K+
1′ = K1 ∪ {C+

1′ }. This is
a technique of introduction of clauses, which is also used in inductive
generalization.

Abductive generalization reduces nondeterminism in induction. There
may be many possible inductive generalizations that comply with ob-
servations, then abduction leads us to hypotheses on which a knowledge
base should be repaired. However, when positive observations O+ have
multiple explanations E1, . . . , En in K, a generalization K+ exists with
respect to each lg(Ei).

EXAMPLE 3.3. Let K be the knowledge base

p(x)← q(x), s(x),

q(x)← r(x), t(x),

s(a)←, s(b)←, s(c)←,

t(a)←, t(b)←
with A = { q(x), r(x) }. Given O+ = { p(a), p(b) }, there are two expla-
nations E1 = { q(a), q(b) } and E2 = { r(a), r(b) }. Using E1, abductive
generalization becomes

K+
E1

: p(x)← s(x),

q(x)← r(x), t(x),

s(a)←, s(b)←, s(c)←,

t(a)←, t(b)← .

On the other hand, using E2 it becomes

K+
E2

: p(x)← q(x), s(x),

q(x)← t(x),

s(a)←, s(b)←, s(c)←,

t(a)←, t(b)← .

Here, p(c) is derived from K+
E1

but not from K+
E2
.

Thus, there are generalizations according to different explanations,
and each generalization produces different leaps in general. This kind of
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nondeterminism could be reduced if further observations on the leaps
are available. For instance, if p(c) is known to be false, K+

E1
does not

reflect the situation and K+
E2

is chosen.
Some additional condition is considered for performing abductive

generalization. Suppose that the positive observationsO+ = { profit(k),
profit(h) } are given to the knowledge base K1 of Example 3.1. Since
there is no fact on k’s and h’s stock, abduction computes the expla-
nation E = { stock(k, t1), stock(h, t2), up(t1), up(t2) } for some in-
stances t1 and t2. In this case, by the least generalization lg(E) =
{ stock(x, y), up(y) }, both stock(x, y) and up(y) are dropped from the
body of the clause profit(x) ← stock(x, y), up(y). The generalized
clause then becomes

profit(x)←,

saying that everyone makes a profit. To avoid such over-generalization,
it is effective to restrict dropping conditions only when generalized
clauses are range-restricted.5

4. Specializing knowledge bases through abduction

4.1. Abductive specialization

This section considers a situation where negative observations are given
to a knowledge base. In a definite theory whenever a negative observa-
tion has an explanation (E,F ), E is empty. This is because introducing
facts to a definite theory does not help to recover consistency with re-
spect to negative observations. Thus, an explanation (∅, F ) is simply
written as F in this section.

EXAMPLE 4.1. Consider the knowledge base K2 = K+
1 of Exam-

ple 3.2. When the negative observation O− = {¬ profit(d) } is pro-
vided, K2 ∪O− is inconsistent. To recover consistency of K2 wrt. O−,
abduction computes the explanation F = { stock(d, h) }.

Thus, abduction recovers consistency by removing hypothetical facts
from a knowledge base. Our goal in this section is to achieve the same
effect not by removing hypotheses but by specializing clauses. That
is, given a knowledge base and negative observations, we produce a
specialized knowledge base which is consistent with the observations.

DEFINITION 4.1. Let K be a knowledge base and O− a set of nega-
tive observations. Then, the following procedure computes an abductive
specialization K− of K wrt. O−. First, put K− = K.

5 A clause is range-restricted if any variable in the clause occurs in the body.
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1. Compute an explanation F of O−.

2. For every A ∈ F , replace the corresponding fact C : A ← in K−
with the clause

C− : A← A′

where A′ is a newly introduced abducible uniquely associated with
A.

Abductive specialization abductively finds facts which are the sources
of inconsistency. Then those facts are specialized by introducing newly
invented abducibles to their conditions. The specialized knowledge base
K− is consistent with O−.

THEOREM 4.1. Let K be a knowledge base and O− negative observa-
tions. If O− has an explanation F , K− ∪ O− is consistent.

Proof. For any O− = ¬G from O−, K \ F 	|= G holds by definition.
When K∪{O−} is inconsistent, G is derived from K using each atom A
in F . Then, rewriting every corresponding fact A← in K with A← A′
in K−, G is not derived from K−.

EXAMPLE 4.2. Consider the knowledge baseK2 andO− = {¬ profit(d) }
of Example 4.1. By the explanation F = {stock(d, h)}, the correspond-
ing fact C2 : stock(d, h)← in K2 is specialized to

C−
2 : stock(d, h)← stock′(d, h).

As a result, K−
2 becomes

K−
2 : profit(x)← stock(x, y),

stock(a, e)←, stock(b, f)←, stock(c, g)←,

stock(d, h)← stock′(d, h),

where K−
2 ∪ {¬ profit(d) } is consistent. In the specialized knowledge

base K−
2 , an additional hypothesis stock′(d, h) is requested to conclude

that d bought a (good) stock h.

Note that abduction removes explanatory facts from a knowledge
base, while abductive specialization keeps information on them. This
is useful for recovering the previous state of a knowledge base. For
instance, if the stock h later rises and profit(d) turns positive, K2 is
reproduced from K−

2 using abductive generalization, i.e., dropping the
condition stock′(d, h) in C−

2 .
Abductive specialization recovers consistency by modifying facts

while retaining general knowledge. This is also the case of updates



Abductive Generalization and Specialization 11

in deductive databases where every fact in a database is considered an
abducible which is subject to change (Kakas and Mancarella, 1990). On
the other hand, when one wants to specialize not only facts but rules in
a knowledge base, abductive specialization is applied in the following
manner.

Given a knowledge base K with abducibles A, we first select hypo-
thetical clauses from K which are subject to change. For any hypothet-
ical clause

Ci : H ← B

in K, we consider the clause

C ′
i : H ← B, Ai

where Ai is a new abducible uniquely associated with each Ci.
6 Then

we consider the knowledge base

K ′ = (K \
⋃

i

{Ci}) ∪
⋃

i

{C ′
i} ∪

⋃

i

{Aiθj ←},

where Aiθj is any ground instantiation of Ai. Abducibles associated
with this new theory K ′ are defined as

A′ = A ∪
⋃

i

{Ai }.

Then, we apply abductive specialization to K ′ with the following
policy. If we want to specialize Ci and negative observations O− have
an explanation F containing Aiθj , then we take the explanation F and
specialize the corresponding fact Aiθj ← in K ′. The resulting knowl-

edge base K ′− has the same effect as specializing Ci in K.

EXAMPLE 4.3. Let K be the knowledge base

flies(x)← bird(x),

bird(tweety)←, bird(polly)←
with A = { bird(x) }. Suppose that the first clause is a hypothetical
clause which we want to revise. First, K is transformed to K ′:

K ′ : flies(x)← bird(x), p(x),

p(tweety)←, p(polly)←,

bird(tweety)←, bird(polly)←
6 This technique is called naming in (Poole, 1988). When Ci contains n distinct

free variables x = x1, . . . , xn, an abducible Ai = pi(x) is associated with Ci where
pi is an n-ary predicate appearing nowhere in K.
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with A′ = { bird(x), p(x) }. Given O− = {¬ flies(tweety) }, it has two
explanations F1 = { bird(tweety) } and F2 = { p(tweety) }. According
to the policy, F2 is chosen then K ′− becomes7

K ′− : flies(x)← bird(x), p(x),

p(tweety)← p′(tweety),
p(polly)←,

bird(tweety)←, bird(polly)← .

Note that K ′− has the effect of specializing the first clause in K
wrt. O−. The revised knowledge base means that a bird flies if it sat-
isfies an additional property p (normality or something). But tweety
fails to satisfy the property by the presence of the unproved condition
p′.

4.2. Combining abductive generalization and specialization

Finally, we consider combining abductive generalization and special-
ization in the presence of both positive and negative observations. Ab-
ductive generalization often produces an overly general theory which
is inconsistent with some negative observations. Let us consider the
knowledge base K1 of Example 3.1 in which the observations O =
{ profit(a), profit(b), profit(c), ¬ profit(d) } are given. By the posi-
tive observations O+ from O, abductive generalization produces K2 =
K+

1 of Example 3.2 which explains O+. As K2 is inconsistent with the
negative observation O− from O, abductive specialization producesK−

2
of Example 4.2 which is consistent with O−. Thus, in the presence of
both positive and negative observations, it is considered that first gen-
eralizing a theory to derive positive observations, then specializing the
theory to satisfy negative observations. Note that in this example each
positive observation in O+ is still derived from K−

2 . However, the spe-
cialization may affect the derivation of positive observations in general.

Given a knowledge base K and positive/negative observations O,
let K± be a knowledge base obtained by combining the procedures of
Definitions 3.1 and 4.1. When a generalization K+ is obtained by O+,
a necessary set of O+ in K+ is defined as a minimal set F of facts such
that K+ \ F 	|= G for some G ∈ O+. Such a necessary set is computed
using abduction. That is, putting ¬G as a negative observation in K+,
a necessary set of {G} is obtained as an explanation F of ¬G.

7 When there are (infinitely) many ground instantiations of p(x), the set of facts
p(t)← other than p(tweety)← is shortly written as p(x)← x �= tweety.
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THEOREM 4.2. Let K be a knowledge base in which positive and neg-
ative observations O have an explanation, and O+ ∩ A = ∅. For any
necessary set F1 of O+ in K+ and an explanation F2 of O− in K+,
suppose F1 ∩ F2 = ∅. Then, there is a knowledge base K± such that

1. K± |= O+ for every O+ ∈ O+,

2. K± ∪ O− is consistent.
Proof. First, by the transformation from K to K+, K+ |= O+ for

every O+ ∈ O+ (Corollary 3.2). Second, by the transformation from
K+ to K± using F2, K

± ∪ O− is consistent (Theorem 4.1). In this
transformation, each fact A ∈ F2 is transformed to A← A′ in K±. As
A 	∈ F1, this rewriting does not affect the derivation of any O+ from
K+. Therefore, K± |= O+ for every O+ ∈ O+.

When a necessary set of O+ and every explanation of O− in K+

have an atom in common, the result of Theorem 4.2 does not hold in
general.

EXAMPLE 4.4. Let K be the knowledge base

p(x)← q(x),

q(x)← r(x), s(x),

s(a)←, s(b)←
with A = { r(x), s(x) }. Given O = { p(a), p(b), ¬ q(a) }, the positive
observationsO+ = { p(a), p(b) } have the explanation E = { r(a), r(b) }
and K is generalized to K+:

p(x)← q(x),

q(x)← s(x),

s(a)←, s(b)← .

In this K+, O+ = p(a) has the necessary set F1 = { s(a) }. On the other
hand, the negative observation O− = {¬ q(a) } has the explanation
F2 = { s(a) } which is equivalent to F1. Then, the specialized knowledge
base K±:

p(x)← q(x),

q(x)← s(x),

s(a)← s′(a),
s(b)←

does not derive O+.
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Note that O has no explanation in K in the above example. Indeed,
when some facts are necessary to explain a positive observation, those
facts cannot be removed to satisfy negative observations. This is a
necessary condition which a knowledge base should satisfy to have an
explanation for both positive and negative observations. This condition
is expressed as F1 ∩ F2 = ∅ in Theorem 4.2.

5. Related work

Several systems use abduction in the process of induction. Ourston and
Mooney (1990) introduce a theory refinement system called Either.
To generalize a theory, it abductively searches the cause of failed pos-
itive observations and generalization is done by inserting a new clause
or dropping most specific explanations from the conditions of a clause.
Specialization is done by removing a clause or adding new antecedents
to a clause. In this volume, Mooney also presents a theory refinement
algorithm which generalizes a theory by deleting abduced literals or
inducing new clauses. In Audrey (Wogulis, 1991), abduction is used
for identifying assumptions on which the domain theory should be re-
paired. InAudrey II (Wogulis, 1991), abduced assumptions are deleted
from a theory unless it covers negative examples. In Either the do-
main theory is a propositional Horn theory, while Audrey (II) consid-
ers predicate Horn theories. Our use of abduction is similar to these
systems, but is different from them on the following points. First, we
generalize a theory with least generalized explanations. Second, we use
extended abduction for not only generalizing theories but also special-
izing them. In Clint (De Raedt and Bruynooghe, 1992) and Ruth
(Adé, et al., 1994) abduction supplements induction by hypothesizing
factual knowledge and is also used for diagnosing a cause of integrity
violation in a knowledge base. Sieres (Wirth and O’Rorke, 1992) uses
abduction to infer training sets of assumptions for inductively invented
predicates.

Integration of abduction and induction is also investigated by some
researchers. Adé and Denecker (1995) introduce a procedure called
Sldnfai. It inductively constructs hypothetical clauses to cover pos-
itive observations and uncover negative observations. Inductive hy-
potheses constructed in this manner, called inducibles, are used for
explaining observations in the abductive procedure. Dimopoulos and
Kakas (1996) construct hypothetical rules to explain both positive and
negative observations. Abduction is used for restricting a background
theory to a relevant part on which induction is based. Abducibles are
introduced to the body of a clause to refine hypotheses. Lamma et al.
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and Inoue and Haneda in this volume introduce systems for learning
abductive logic programs, which produce a new abductive program from
observations and a background abductive theory. The above presented
systems consider a general induction problem, namely, learning con-
cepts possibly having no definitions in the background knowledge base.
They use typical induction algorithms like Mis (Shapiro, 1981) or Foil
(Quinlan, 1990), in which hypotheses are constructed from scratch.
However, such general induction algorithms require exhaustive search
and would produce many useless hypotheses. By contrast, we restricted
the problem setting and assumed a prior knowledge base having im-
perfect rules defining the learning concept. Then we used abduction to
revise such incomplete knowledge rather than inducing arbitrary new
knowledge.

6. Concluding remarks

This chapter introduced new techniques of abductive generalization and
abductive specialization. They provide methods for revising a knowl-
edge base in the face of positive and negative observations, and com-
pute inductive generalization and specialization through abduction. Al-
though the proposed techniques are still restrictive compared with gen-
eral induction systems, they enhance the reasoning ability of abduction
and also realize efficient induction. Our system is realized using the pro-
cedure of extended abduction (Inoue and Sakama, 1998).

According to Peirce (1932), “if we are ever to learn anything or to
understand phenomena at all, it must be by abduction that this is to
be brought about .” In this respect, abduction is considered as a step
to induction. Abductive generalization and specialization are captured
as techniques based on this view, and there are possibilities of exploit-
ing further techniques in this direction. On the application side, it is
known that abduction is useful for database update and theory revi-
sion where extensional facts are subject to change (Kakas and Mancar-
ella, 1990; Inoue and Sakama, 1995). By contrast, abductive general-
ization/specialization constructs intensional rules for new information,
so it has potential applications to rule updates in knowledge bases. Fu-
ture research also includes extending the techniques to nonmonotonic
knowledge bases.
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