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Abstract This paper provides a logical framework for comparing inductive capabili-
ties among agents having different background theories. A background theory is called
inductively equivalent to another background theory if two theories induce the same
hypotheses for any observation. Conditions of inductive equivalence change depending
on the logic of representation languages and the logic of induction or inductive logic
programming (ILP). In this paper, we consider clausal logic and nonmonotonic logic
programs as representation languages for background theories. Then, we investigate
conditions of inductive equivalence in four different frameworks of induction, cautious
induction, brave induction, learning from satisfiability, and descriptive induction. We
observe that several induction algorithms in Horn ILP systems require weaker con-
ditions of equivalence under restricted problem settings. We address that inductive
equivalence can be used for verification and evaluation of induction algorithms, and
argue problems for optimizing background theories in ILP.

Keywords inductive equivalence - inductive logic programming - nonmonotonic logic
programs

1 Introduction

Equivalence relations between logical theories have been studied in many ways in ar-
tificial intelligence and logic programming. In knowledge representation, a theory rep-
resents knowledge of a problem domain. The same problem would be represented in
different ways by different experts. Equivalence of two theories is then used for eval-
uating information contents and identifying different information sources. In program
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development, one program may give a declarative specification of some problem and
another program may give an efficient coding of it. In this case, equivalence of two pro-
grams guarantees a correct implementation of the given specification. In the context
of logic programming, various criteria for equivalence relations are proposed in the lit-
erature (Maher 1988; Sagiv 1988; Lifschitz et al. 2001; Eiter and Fink 2003; Inoue and
Sakama 2004). Among them, weak equivalence and strong equivalence of two programs
are particularly important. Two logic programs P; and P» are (weakly) equivalent if
they have the same declarative meaning. On the other hand, two programs P; and P»
are strongly equivalent if they preserve the equivalence relation by the introduction of
arbitrary rules R to them.

Equivalence relations presented above compare capabilities of deductive reasoning
between programs. For instance, two Horn logic programs are weakly equivalent if they
have the same least model that is the logical consequences of each program. When we
consider realizing intelligent agents that can perform commonsense reasoning, however,
comparing capabilities of non-deductive reasoning between programs is also necessary
and important. Recently, Inoue and Sakama (2005, 2006a,b) argue equivalence in ab-
ductive logic. They introduce two different types of abductive equivalence: explainable
equivalence and explanatory equivalence. The former considers whether two theories
have the same explainability for any observation, while the latter considers whether
two theories have the same explanation contents for any observation. These two notions
compare capabilities of abductive reasoning among agents, and they provide necessary
and sufficient conditions for abductive equivalence in first-order logic and abductive
logic programming (ALP) (Denecker and Kakas 2002). Induction is also known as non-
deductive reasoning, which is often distinguished from abduction (Flach and Kakas
2000). In computational logic, induction is realized by inductive logic programming
(ILP) (Muggleton 1992; Nienhuys-Cheng and Wolf 1997). A typical induction problem
is to build a hypothesis which covers a given observation with respect to a background
theory. Then, there are some questions concerning equivalence issues in induction.

1. When can we say that induction with a background theory is equivalent to induction
with another background theory?
Two different background theories B; and By are considered equivalent if they
induce the same hypothesis H for any observation O. This equivalence measure is
useful for comparing “information contents” of different background theories.

2. When can we say that induced hypotheses are equivalent to another induced hy-
potheses?
Two hypotheses Hy and H» are considered equivalent if they account for the same
observation O with respect to a background theory B. This equivalence measure is
useful for comparing “explanation power” of different hypotheses.

3. When can we say that induction from an observation is equivalent to induction
from another observation?
Two observations O; and Os are considered equivalent if they produce the same
hypothesis H with respect to a background theory B. This equivalence measure is
useful for comparing “evidential power” of different observations.

4. Do conditions for these equivalence differ by underlying logics?
The results of induction and equivalence conditions generally depend on a logic on
which induction is based. Moreover, those conditions differ among individual induc-
tion algorithms. Then, we can compare different logics or algorithms for estimating
their induction capabilities.



These issues are important and meaningful for comparing different induction tasks,
but few studies have argued the problems so far. In this paper, we focus on the question
(1) above and study the problem of equivalence of background theories in induction.
To answer the question (4), we also investigate conditions of equivalence in different
logics and induction algorithms. Other problems, concerning the questions (2) and (3),
are studied in a different paper (Sakama and Inoue 2009a).

To formalize the problem, we introduce the notion of inductive equivalence between
background theories. A background theory Bj is said inductively equivalent to another
background theory By if B; and By induce the same hypothesis H for an arbitrary
observation O. Intuitively, if an agent has a background theory B; which is induc-
tively equivalent to another background theory By of another agent, then these two
agents are considered equivalent with respect to inductive capability. In this case, we
can identify those two agents as far as induction is concerned. From the viewpoint
of program development, if a theory Bj is transformed to another syntactically dif-
ferent Bs, inductive equivalence of two theories guarantees identification of results of
induction from each theory. This provides guidelines for optimizing background theo-
ries in ILP. The problem of interest is logical conditions for inductive equivalence in
ILP. Conditions for inductive equivalence differ depending on logics of representation
languages and logics of induction. This paper considers two logics for representation
languages — clausal logic and nonmonotonic logic programming. These logics are widely
used in knowledge representation and ILP (Muggleton 1992; Baral and Gelfond 1994).
On the other hand, we consider four different frameworks of induction, cautious induc-
tion, brave induction (Sakama and Inoue 2009b), learning from satisfiability (De Raedt
1997; De Raedt and Dehaspe 1997a), and descriptive induction (Lachiche 2000). These
frameworks capture different aspects of induction problems. We show necessary and
sufficient conditions for inductive equivalence under different semantics in respective
induction. We also observe that some induction algorithms in Horn ILP systems require
weaker conditions of inductive equivalence. We address that inductive equivalence is
used for testing correctness/completeness of an induction algorithm and comparing
capabilities of different algorithms. We also argue problems for optimizing background
theories in ILP through appropriate program transformations.

This paper is a revised and extended version of (Sakama and Inoue 2005). The
differences between the present work and the previous one are follows. First, we apply
the framework of inductive equivalence to different types of induction, and investigate
formal properties among them. Inductive equivalences in cautious induction, brave
induction, and learning from satisfiability are new in this paper. Second, inductive
equivalences in particular induction algorithms are also revised and extended. Inductive
equivalences in ForL and BRAIN™!
inductive equivalence in nonmonotonic logic programs are generalized to background
theories which possibly contain disjunctions. Fourth, new considerations and additional
arguments are added throughout the paper.

are new in this paper. Third, previous results for

The rest of this paper is organized as follows. Section 2 presents logical frameworks
used in this paper. Section 3 introduces the notion of inductive equivalence and in-
vestigates formal properties in clausal logic. Section 4 verifies conditions of inductive
equivalence in some Horn ILP systems. Section 5 applies inductive equivalence to non-
monotonic logic programs. Section 6 discusses related issues and potential applications.
Finally, Section 7 concludes the paper.



2 Logical Framework
2.1 Clausal Theories

A first-order language consists of an alphabet and all formulas defined over it. The
definition is the standard one in the literature (Nienhuys-Cheng and Wolf (1997), for
instance). A first-order theory is a set of formulas. A clause is a formula of the form

ALV VAR V=Ap 1 V- Va4, (1)

where A; (1 < i < n) are atoms and every variable appearing in (1) is universally
quantified at the front. A clausal theory (or simply a theory) is a set of clauses. The
clause (1) is also written as

A1V VAm < Apti,..., An (2)

in the context of logic programming. The disjunction A V---V Ay, is the head and the
conjunction A,,11,...,An is the body of the clause. In particular, a clause (2) having
at most one atom in its head is a Horn clause and a set of Horn clauses is a Horn logic
program. A Horn clause is called a definite clause if it contains exactly one atom in its
head. A definite logic program is a set of definite clauses. A clause A < is called a fact
and is identified with the atom A. A theory is identified with the conjunction of clauses
included in the theory. A theory, a clause or an atom is ground if it contains no variable.
A theory or a clause with variables is identified with the set of its ground instances. A
propositional theory is a finite set of ground clauses. Clausal theories and Horn logic
programs are subsets of first-order theories, while nonmonotonic logic programs, which
are handled in Section 4, are outside of first-order logic.

The domain of a theory is given as the Herbrand universe and interpretations
are defined as subsets of the Herbrand base HB. An interpretation M satisfies the
ground clause of the form (2) if { Ay41,...,An } C I implies { A1,..., A } NI # 0.
M satisfies a theory T if M satisfies every ground instance of any clause in T. An
interpretation M is a model of a theory T if M satisfies T. The set of all models of T is
written as Mod(T). The semantics of a theory T is represented as a subset SEM (T')
of Mod(T), i.e.,

SEM(T) C Mod(T).

The set SEM(T) represents models that are selected from Mod(T) based on some
preference criterion. In particular, SEM (T) = Mod(T) holds under the classical model
theory of first-order logic. A theory T is consistent under SEM if SEM(T) # 0;
otherwise, T is inconsistent. A theory T satisfies a clause C (written as T = C) if
C is satisfied in every model of T. T satisfies a set S of clauses (written as T' = S)
if T = C for any clause C' in S. There are several criteria for selecting models as
SEM(T). Among them, minimal models are often considered in the literature. The set
of all minimal models of T' (denoted by M M (T)) is defined as

MM(T)={M € Mod(T) | -3N € Mod(T) such that N C M }.

Every consistent clausal theory has a minimal model (Bossu and Siegel 1985).



2.2 Logics of Induction

There are several definitions of induction. In this paper, we consider the following four
different frameworks of induction:

Cautious induction (Sakama and Inoue 2009b)

Brave induction (Sakama and Inoue 2009b)

— Learning from satisfiability (De Raedt 1997; De Raedt and Dehaspe 1997a)
— Descriptive induction (Lachiche 2000)

Let B, H, and O be sets of formulas respectively representing a background theory, a
hypothesis, and an observation. Then, each induction is defined as follows."

Cautious induction: Given B and O, find H such that O is satisfied by every M €
SEM(B U H) where BU H is consistent.

Brave induction: Given B and O, find H such that O is satisfied by some M €
SEM (B U H) where B U H is consistent.

Learning from satisfiability: Given B and O, find H such that BU H U O is con-
sistent under SEM.

Descriptive induction: Give B and O, find H such that H is satisfied by every
M € SEM(B U O) where BU O is consistent.

In each case, we say that a hypothesis H covers (or ezplains) O with respect to
B (under SEM) in the induction framework I. H is also called a solution in I. Here,
I is one of the four induction frameworks presented above. In this paper, cautious
induction, brave induction, learning from satisfiability, and descriptive induction is
respectively abbreviated as Caulnd, Bralnd, LFS, and Deslnd.

Cautious induction requires an observation to be satisfied in every model in SEM (BU
H). In particular, when SEM (B U H) = Mod(B U H) in first-order logic, it is written
as

BUH EE.

In this case, cautious induction is also called ezplanatory induction (abbreviated as Ex-
pind) (Flach 1996), which is known as usual setting in ILP (Muggleton 1992; Nienhuys-
Cheng and Wolf 1997). Brave induction, on the other hand, requires that an observa-
tion is satisfied in some models in SEM (B U H). By the definition, brave induction
is weaker than cautious induction, that is, if H is a solution of cautious induction, it
is also a solution of brave induction, but not vice versa. Learning from satisfiability is
weaker than brave induction, so that it provides the weakest form of induction among
those three frameworks. Brave induction and learning from satisfiability coincide when
SEM(B) = Mod(B). That is, O is satisfied in some model of BU H iff BUH UO
is consistent. Descriptive induction, which is also called confirmatory induction (Flach
1996), prescribes that a hypothesis is satisfied in a background theory and an obser-
vation. In contrast to explanatory induction, it does not intend to learn classification
rules but seek regularities over observed data. When an observation is given as a set
of interpretations, descriptive induction is also called learning from interpretations (De
Raedt 1997; De Raedt and Dehaspe 1997b).

L Observations defined here are positive observations. In the literature, negative observations
are often considered as well as positive ones. For simplicity reasons, we consider positive
observations only in this paper.



Ezample 2.1 (Sakama and Inoue 2009b) Suppose that there are 30 students in a class,
of which 20 are European, 7 are Asian, and 3 are American. The situation is represented
by the background theory B and the observation O:

B = { student(1),. .., student(30) },
O = { euro(1),...,euro(20), asia(21),...,asia(27), usa(28),...,usa(30) }

where each number represents individual students. Put the semantics of the background
theory as the minimal model semantics, SEM (B) = M M (B). First, consider the set
H; of the following clauses

euro(z) < student(z),
asia(z) < student(x),
usa(z) « student(z).

Then, H; is a solution of Bralnd, Caulnd, and LFS, but it is not a solution of DesInd.
Next, consider the set Ho which consists of the single clause

euro(z) V asia(z) V usa(x) < student(z).

H, is a solution of Bralnd, LFS, and Deslnd, but it is not a solution of Caulnd.
Finally, consider the set Hs which consists of the single clause

student(x) < euro(x).
Hs is a solution of DesInd and LFS, but it is not a solution of Bralnd nor Caulnd.

Thus, four induction frameworks provide different solutions in general.

2.3 Equivalence Relation

Two different theories are equivalent in many ways. In this paper, we handle three
different notions of equivalences. Consider two theories 77 and 75 which have the
common underlying language. Then, T and T> are

— logically equivalent (written as Ty = Tb) if Mod(Ty) = Mod(T5).

— weakly equivalent (written as T} =, To) if SEM(T1) = SEM(T»).

— strongly equivalent (written as T =5 To) if T} UU = T> U U for any theory U
under the same language.

By the definition, T} =5 T implies T} =y T». In particular, three equivalence relations
coincide in first-order logic under the condition SEM(T) = Mod(T) (Eiter and Fink
2003).

We first show that logical equivalence coincides with strong equivalence when
SEM(T) = MM(T) in clausal logic.

Proposition 2.1 Let T be a clausal theory and HB its Herbrand base. For any M (C
HB), put M* = MU{-A | A€ HB\ M}. Then, M is a model of a theory T iff
T U M?* is consistent.



Proof If M is a model of T, so is M*. Then, T U M* is consistent. Conversely, when
T U M™ is consistent, assume that M is not a model of T. Then, there is a clause C in
T which is not satisfied by M. In this case, M™* U {C?} is inconsistent. This contradicts
the fact that T U M* is consistent. o

Proposition 2.2 (logical equivalence vs. strong equivalence under MM) Let Ty and T
be two clausal theories. Then, Ty = Ty iff MM (T1 UU) = MM (T> UU) for any clausal
theory U.

Proof The only-if part is obvious. Assume MM (Ty UU) = MM (T> U U) for any U. If
T} # T», thereis either M € Mod(T1)\ Mod(T>) or M € Mod(T>)\ Mod(T1). Consider
the case M € Mod(T1)\ Mod(T>). Since M is not a model of To, ToUM™* is inconsistent
(Proposition 2.1). Thus, MM (ToUM?™) = 0. On the other hand, M € Mod(T;) implies
M € Mod(Ty U M*). Since Ty U M* is a clausal theory, M € Mod(T; U M*) implies
the existence of minimal models. Hence, MM (T} U M™*) # (. This contradicts the
assumption. The case of M € Mod(T>) \ Mod(T}) is proved in the same manner.
Hence, T1 = T5. a

Proposition 2.3 (logical equivalence vs. weak equivalence under MM) Let Ty and T
be two clausal theories. Then, T7 = Ty implies T = To under the minimal model
semantics.

The converse of Proposition 2.3 does not hold in general.
Ezample 2.2 Consider three clausal theories:

Ty ={aVb, ¢cV-a, cV-b},
TQZ{aVb7 C},
Ts={aVb, —-aV-b c}.

First, set SEM (T;) = Mod(T;) for i = 1,2,3. Then,
Mod(Ty) = Mod(T>) = {{a7 C}7 {b7 C}, {aa b, C}} and Mod(T3) = {{aa C}, {b7 C}}

In this case, the following relations hold: Th = Ts, Th # T3 and Ts # T5.
Next, set SEM (T;) = MM (T;) for i = 1,2,3. Then,

MM(Ty) = MM(T>) = MM(T3) = {{a,c}, {b,c}}.

In this case, the following relations hold: Th = T =w T3, T1 =s T2, Th1 #s T3 and
T #s T3. Here, T #s T3 because the addition of @ = {a,b} makes T3 inconsistent.

3 Inductive Equivalence in Clausal Logic
3.1 Inductive Equivalence

We first provide a general framework of inductive equivalence between two theories.

Definition 3.1 (inductive equivalence) Let B; and By be two background theories
having the same Herbrand base HB. For any observation O, suppose that a hypothesis
H covers O with respect to By under SEM in induction I iff H covers O with respect
to B2 under SEM in induction I. In this case, By and Bs are said to be inductively
equivalent under SEM in I (written B EfEM Bs).



By the definition, inductive equivalence presents that two background theories have
the same explanation contents for any observation. Note that there are at least three
different parameters on which inductive equivalence depends — (i) syntax of B, H and
O, (ii) the underlying semantics SEM, (iii) and the framework of induction I. In this
paper, we study several cases of inductive equivalence with different parameters.

The notion of inductive equivalence is applied to four induction frameworks as
follows.

Definition 3.2 (inductive equivalence in different frameworks of induction) Let By
and Bs be two theories having the same Herbrand base HB. Then,

1. B; and Bs are inductively equivalent under SEM in cautious induction (written
By ng‘f\fd Bs) if for any O and any H, O is satisfied by every M € SEM (B1 UH)
iff O is satisfied by every M € SEM(Bs U H), where By U H and By U H are
consistent.

2. By and Bs are inductively equivalent under SEM in brave induction (written
By Egg%j Bs) if for any O and any H, O is satisfied by some M € SEM (B UH)
iff O is satisfied by some M € SEM (B U H), where By U H and By U H are
consistent.

3. B and By are inductively equivalent under SEM in learning from satisfiability
(written By =EM Bs) if for any O and any H, By U H U O is consistent iff
B> U H U O is consistent.

4. Bp and Bs are inductively equivalent under SEM in descriptive induction (written
B EgeEs‘ljnMd By) if for any O and any H, H is satisfied by every M € SEM (B1 U O)
iff H is satisfied by every M € SEM(By U O), where B; U O and By U O are
consistent.

Proposition 3.1 (relations between different inductive equivalences) For any SEM,
the following relations hold.

_SEM . . _SEM

1. By =2;/1ng B2 implies B1 =g, 1nq B2-
_SEM - - _SEM

2. B1 =gyaing B2 ¢mplies B1 =[fs Bo.
_SEM . _SEM

8. B1 =Cauind B2 ilf B1 =pesind B2-

Proof The results of (1) and (2) hold by their definition. To see (3), the definition of
inductive equivalence in descriptive induction is obtained by exchanging the positions
of O and H in the definition in cautious induction. Since both O and H are arbitrary
sets of formulas, the result holds. O

Proposition 3.1(1) and (2) show that the implication relations among three in-
duction frameworks are inherited to equivalence relations. On the other hand, Propo-
sition 3.1(3) represents that in the context of inductive equivalence, distinction be-
tween cautious induction and descriptive induction is unimportant. With this reason,
we mainly consider inductive equivalence in cautious induction, brave induction, and
learning from satisfiability, hereafter.

3.2 Inductive Equivalence between Clausal Theories

In this section, we consider the following problem setting:



— a background theory B is given as a clausal theory,
— an observation O is a set of clauses,
— a hypothesis H is a set of clauses.

We first set SEM (B) = Mod(B), i.e, the classical semantics in first-order logic. In this
case, cautious induction coincides with explanatory induction, and brave induction
coincides with learning from satisfiability, as presented in Section 2.2. Necessary and
sufficient conditions for inductive equivalence are stated below.

Theorem 3.2 (condition for inductive equivalence in explanatory induction) For any
two clausal theories By and B2, By Egzﬁ]d B> iff By = B».

Proof Let O and H be arbitrary sets of clauses. Then, B; and Bs are inductively
equivalent in cautious induction

iff BIUH =0 < By UH |= O for any O and H such that B; U H and By U H are
consistent

iff BEH— O & By |EH — O for any O and H such that By UH and By U H are
consistent

iff By = B>. O

Theorem 3.3 (condition for inductive equivalence in brave induction) For any two
clausal theories By and By, By Eé{:lﬁd Bs iff By = Bs.

Proof Let O and H be arbitrary sets of clauses. Then, B; and B> are inductively
equivalent in brave induction

iff B; U H UQO is consistent < By U H U O is consistent for any O and H

iff B; U O is consistent < B U O is consistent for any O

iff B; [ -0 & Bj [~ -0 for any O

iff B; E F < By = F for any formula F

iff By = B>. ]

By Theorems 3.2 and 3.3, the following result follows.

Corollary 3.4 (inductive equivalence in cautious induction and brave induction) For
any two clausal theories By and By, By =MoL\ By iff By =M5%, Bs.

By the fact that descriptive induction is identified with cautious induction (Proposi-
tion 3.1), we conclude that the inductive equivalence relations in four different induction
frameworks coincide under the classical semantics.

Next, we set SEM(B) = MM(B) for the semantics of a clausal theory B. This
setting is considered as the minimal model semantics of disjunctive logic programs
(Minker 1982) or circumscription (McCarthy 1980). In this case, we have the next
result.

Theorem 3.5 (condition for inductive equivalence under MM in cautious induction)
For any two clausal theories By and Bs, B Eg%]d B> iff By = B».

Proof Suppose that B; and By are inductively equivalent under the minimal model
semantics in Caulnd. Then, for any set O and for any set H of clauses, O is satisfied by
any M € MM (By U H) iff O is satisfied by any N € MM (By U H) where B; U H and
By U H are consistent. By putting O = By U H, it holds that By U H is satisfied by
any M € MM (B; UH) iff By U H is satisfied by any N € MM (By U H). By putting
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O = B> U H, it holds that B2 U H is satisfied by any M € MM (By UH) iff Bo U H is
satisfied by any N € MM (By U H). As By U H is satisfied by any M € MM (B U H)
and B U H is satisfied by any N € MM (By U H), it holds that By U H is satisfied by
any N € MM (By U H) and Bs U H is satisfied by any M € MM (By U H). Since any
minimal model M of By U H satisfies every clause in By UH, M € Mod(Bs U H). If
M ¢ MM (ByUH), there is a minimal model I € M M (B> UH) such that I C M and I
satisfies Bo U H. Since any minimal model I of Bs U H satisfies every clause in By UH,
I € Mod(B; U H). But this is impossible because M is a minimal model of B; U H.
Hence, M € MM (B U H). Likewise, N € MM (By U H) implies N € MM (B, U H).
Therefore, MM (B; U H) = MM(By U H), so that B; = By by Proposition 2.2.
Conversely, if B = By, MM (B1UH) = MM (B3UH) holds for any set H of clauses
(Proposition 2.2). Then, for any set H and for any set O of clauses, O is satisfied by
any M € MM(B; UH) iff O is satisfied by any N € MM (By U H), and By U H is
consistent iff Bo U H is consistent. Hence, By and B> are inductively equivalent under
the minimal model semantics in Caulnd. O

Theorem 3.6 (condition for inductive equivalence under MM in learning from satis-
fiability) For any two clausal theories By and B, Bq E]L\,/%V[ B; iff By = Bs.

Proof Suppose that B; and By are inductively equivalent under the minimal model
semantics in LFS. Then, for any set H and for any set O of clauses, By U H U O is
consistent iff Bo UH UO is consistent. This condition reduces to that B UH is consistent
iff Ba UH is consistent for any set H of clauses (x). If By Z B, there is a ground clause
C such that By = C but By [~ C. Then, B; U {~C} is inconsistent, while By U {~C'}
is consistent. As —C' is a conjunction of ground literals and is identified with a set
of clauses, this contradicts the fact (x). Thus, the condition implies the equivalence
relation B; = B». The converse implication clearly holds. a

Theorem 3.7 (condition for inductive equivalence under MM in brave induction) For
any two clausal theories By and By, B; Eé{é’\l/[nd B iff By = Bs.

Proof Asinductive equivalence in Caulnd implies inductive equivalence in Bralnd (Propo-
sition 3.1), B; and Bs are inductively equivalent under the minimal model semantics
in Bralnd if By = By by Theorem 3.5. On the other hand, inductive equivalence in
Bralnd implies inductive equivalence in LFS (Proposition 3.1), so By and By are in-
ductively equivalent under the minimal model semantics in Bralnd only if B; = By by
Theorem 3.6. O

By the results of Theorems 3.5, 3.6 and 3.7, together with those results under the
classical semantics, we conclude that

Theorem 3.8 (identification of inductive equivalence in clausal theories) For any two
clausal theories By and By, By EfEM Bs iff By = By where SEM s either Mod or
MM and I € {Caulnd, Bralnd, LFS, DesInd}.

Deciding the inductive equivalence of two theories is intractable in general.?

Proposition 3.9 (complezity for deciding inductive equivalence between clausal the-
ories) Deciding inductive equivalence of two propositional clausal theories is coNP-
complete under both the classical semantics and the minimal model semantics in four

2 Throughout the paper, complexity results are stated in terms of the size of input back-
ground theories.
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different induction frameworks. The task is done in polynomial time when two theories
are Horn.

Proof Given two propositional clausal theories B; and Bs, the problem of testing B; =
Bs is equivalent to the problem of testing unsatisfiability of (B; A —=Bs) V (=B1 A Bs),
which is coNP-complete. Then, the result follows by Theorem 3.8. Next, given two
Horn logic programs B; and Bs, By D Bs is checked by testing unsatisfiability of
B; U {—¢} for each clause ¢ € By. As Horn SAT is linear, this is done in quadratic
time. The converse implication is checked in the same manner. O

4 Inductive Equivalence in Horn ILP Systems

There are many ILP systems which use Horn logic programs as background theories. In
these systems, the condition of inductive equivalence is often relaxed. In this section, we
investigate inductive equivalence in some Horn ILP systems which are widely studied
in the literature.

4.1 FoIL

FoIL (Quinlan 1990) induces function-free definite clauses which cover a positive obser-
vation and uncover a negative observation together with a background theory. Given
a predicate p to be learned, it starts with the fact p(x1,..., zn) + which is then spe-
cialized using refinement operators that adds new literals to the body of the clause.
FoIL repeatedly applies a refinement operator until the clause does not imply any fact
included in a negative observation for the predicate. Once a clause is added to a hypoth-
esis, every ground fact implied by that clause is deleted from a positive observation.
The algorithm repeats the step until all facts in a positive observation are covered.
FoIL uses an information-based heuristic to guide its search for hypotheses.

The logic for induction in FOIL is explanatory induction with a restricted problem
setting. Given a function-free definite logic program B (called a Datalog) and a set O
of ground facts, a hypothesis H covers O with respect to B in FoOIL if

BUHEO (3)
where H is a set of function-free definite clauses satisfying the condition:3
H = { C | the predicate appearing in the head of a clause C appears in O }.
The declarative semantics of a definite logic program B is given by the unique

minimal model Mg, called the least model. The least model has the model intersection
property (van. Emden and Kowalski 1976) such that

Mp= ) M.
MeMod(B)

3 In (Quinlan 1990), H contains non-Horn clauses having negative literals in its body, but
the author explains FoIL as a system for learning Horn clauses from data expressed as relations.
To avoid ambiguity, here we assume H as a set of Horn clauses which contain only atoms in
their bodies.
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Thus, the relation (3) is rewritten as
E C Mpun

where Mpy g is the least model of BU H. Note that BU H is a definite logic program
and is always consistent. By this fact, inductive equivalence in FOIL is defined as follows.

Definition 4.1 (inductive equivalence in FoiL) Two Datalog programs By and Bs are
inductively equivalent in FoIL if it holds that O C Mp, g iff O C Mp,ug for any
observation O and for any hypothesis H.

Let H be a set of ground definite clauses and M a set of ground atoms. Then,
define

TH(M)Z{A|A(—A1,...,An is in H and {Al,...,An}gM}.

Theorem 4.1 (condition for inductive equivalence in FOIL) Let By and Bs be two
Datalog programs. Then, By and By are inductively equivalent in FOIL iff B1 = Bs.

Proof For any O and H, O C Mp,,g iff O C MB,uH
& Mp,ur = MB,uH- (*)
Putting H = 0, () implies Mp, = Mp,. Hence, B = Bo.

Conversely, if By =« B, then Mp, = Mp,. Suppose any set H of ground clauses
such that H = {A — Ap,..., A | A€ E} Then, Mp, UTH(MBl) = Mp, U
TH(MBz)- Since Mp, UTH(MBi) = Mp,un fori=1,2, Mp,ur = Mp,un. Hence,
OgMBluH iHO§M32uH for any O and H. O

Ezample 4.1 Two programs

B; ={p(z) < q(x), r(a)«},
By ={r(a) «}

have the same least model {r(a)}, thereby weakly equivalent. Hence, B; and Bj are
inductively equivalent in FOIL.

In Example 4.1, B; and B> are not inductively equivalent in explanatory induction
in general. In fact, for the observation O = {p(a)}, the hypothesis H = { q(z) + r(z) }
explains p(a) in By, but not in By. The hypothesis H is not produced in ForIr, however,
because the predicate g appearing in the head does not appear in O.

4.2 GOLEM

GoLEM (Muggleton and Feng 1990) realizes explanatory induction in definite logic pro-
grams. It uses the algorithm of relative least generalization under subsumption (Plotkin
1971). We first review basic terms and results. A clause Cy subsumes another clause
Cs relative to a program B, denoted by C7 >=pg Cs, if there is a substitution 6 such
that B = €16 — Ca. A clause D is a relative least generalization under subsumption
(rlgs) of C1 and Cs with respect to B if D is the least upper bound of Ci and C»
under the ordering > p over the clausal language. The rlgs does not always exist but
exists when B is a set of ground atoms (Nienhuys-Cheng and Wolf 1997).
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Given a definite logic program B and a set O of ground facts, GOLEM constructs a
hypothesis H as follows:

BUHEO
& HEB—-O
& EH- (-BVO).

At this point, GOLEM replaces B with the conjunction of ground atoms included in a
finite subset of the least model Mp of B. For simplicity reasons, we suppose that the
least model Mp is finite and replace B with Mp. Let O = { Ay,..., A }. Then,

H — -MpgV O

where
-MpVO=(A1V-MB)A---A (A V-Mp)

with - Mp = V 4,cp, —Ai- Next, the rigs of O with respect to Mp (written as
rlgs(Mp, O)) is computed as the least generalization under subsumption (lgs) of clauses
(A1v=Mp),...,(A,V-Mp) (written as lgs(A1V-Mp, ..., A, V=Mp)). A hypothesis
H is then put as

H =rlgs(Mpg,O)

which is a set of definite clauses.
Inductive equivalence in GOLEM is now defined as follows.

Definition 4.2 (inductive equivalence in GOLEM) Let By and Bs be two definite logic
programs such that each program has the least model as a finite set. Then, By and B>
are inductively equivalent in GOLEM if rlgs(Mp,,0) = rlgs(Mp,, O) for any set O of
ground facts.

We then have the following result.

Theorem 4.2 (condition for inductive equivalence in GOLEM) Let By and Ba be two
definite logic programs. Then, By and Bs are inductively equivalent in GOLEM iff
Bl =w B2.
Proof Suppose that B; and By are inductively equivalent in GOLEM. Then, for any
set O = { Ay,..., Ay } of ground facts, rlgs(Mp,,O) = rlgs(Mp,, O) implies lgs(A1 V
-Mp,,..., A V _'MBl) = lgs(4A1 V “Mp,,...,Ap V —|MB2). Put O = {A} for any
ground atom A. Then, lgs(AV-Mp,) = lgs(AV-Mp,) implies AV~ Mp, = AV-Mp,
thereby Mp, = Mp,. Hence, By = Bs.

Conversely, if B =w B2, Mp, = Mp,. Then, for any set O = { Ay,..., A} } of
ground facts, lgs(A1 V-Mp,,..., Ay V- Mp,) =1lgs(A1 V-Mp,,..., A V- Mp,), so
rlgs(Mp,,O) = rlgs(Mp,, O). Hence, the result holds. O

Ezample 4.2 Consider two programs:

B; ={ has-wings(joe) < bird(joe),
bird(tweety) +,
bird(polly) < }.

By ={ bird(tweety) <+,
bird(polly) < }.
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Given the observation O = { flies(tweety), flies(polly) }, both rlgs(Mp,,O) and
rlgs(Mp,,O) contain the single clause:

flies(z) « bird(zx).

This means that the first clause of Bj is of no use for induction in GoLEM. Note that
B and By are weakly equivalent, but they are not logically equivalent.

In the process of constructing inductive hypothesis H, GOLEM approximates B
to a finite subset of Mp. However, rlgs(B,0) # rlgs(Mpg,O) in general. In fact, in
Example 4.2, given O = { has-wing(joe) }, the hypothesis H = { bird(joe) } is obtained
in B; but not in Bs. This means that some hypotheses which are computed under rigs
might be lost by GOLEM.

4.3 ProGOL

ProGoL is also known as a Horn ILP system which realizes explanatory induction. It
is based on the inverse entailment algorithm developed in (Muggleton 1995). Given a
Horn logic program B and a ground Horn clause O as an observation, suppose a Horn
clause H satisfying
BU{H} EO.
By inverting the entailment relation it becomes
BU{-0} = —H.

Put —bot(B, O) as the conjunction of ground literals which are true in every model of
B U {=0}. Then, a clause H is induced by inverse entailment (IE) if H = bot(B, E)
where bot(B, E) is a clause called a bottom clause.*

Inductive equivalence in PROGOL is defined as follows.

Definition 4.3 (inductive equivalence in PROGOL) Two Horn logic programs By and
By are inductively equivalent in PROGOL if bot(B1,0) = bot(Bs,0) for any ground
Horn clause O.

Then, we have the following result.

Theorem 4.3 (condition for inductive equivalence in PROGOL) Two Horn logic pro-
grams By and Bs are inductively equivalent under PROGOL iff By = B>.

Proof By and Bs are inductively equivalent under PROGOL iff bot(B1, O) = bot(Baz, O)
for any O. Then, —bot(By,0) = - bot(B2,0), and By U{-0} = L iff BoU{-0O} = L
for any ground Horn clause O and for any ground literal L. Put O = <+ Aq,..., Ap.
Then, BiU{A1,...,An} ELiff BbU{A;,...,An} = L for any { A1,..., An }. Thus,
for any finite set F' of ground atoms, Bi UF = Lif BoUF = L. So, By = F D L
iff By = F D L for any finite set F' of ground atoms and any ground literal L. This
implies By = Bs. Conversely, By = Bs implies bot(B1,0) = bot(Bs,0), hence the
result holds. O

4 Strictly speaking, PROGOL does not produce every clause satisfying the relation H =
bot(B, E) and is in this sense incomplete (Badea and Stanciu 1999). But here we proceed our
discussion by assuming an ideal algorithm which computes every H satisfying the relation.
CF-induction (Inoue 2004) realizes a sound and complete induction algorithm based on IE in
full clausal theories.
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In PrROGOL, weak equivalence of two programs is not sufficient for inductive equiv-
alence.

Ezample 4.3 Consider two programs:

B; = { white_swan(c) « }.

By = { abnormal(z) + black_swan(z),

white_swan(c) < }.
Given the observation O = <« black_swan(c), it becomes
= bot(B1,0) = white_swan(c) A black_swan(c).

Then,

H, = « white_swan(zx), black_swan(z)

becomes a hypothesis satisfying H; = bot(Bi, E). By contrast,
—bot(B2, 0) = white_swan(c) A black_swan(c) A abnormal(c).

Then,
Hy; = + abnormal(x)

becomes a hypothesis satisfying Hy = bot(Bsz, E). Note that By #Z Bs but By =y Bs.

4.4 CLAUDIEN

The system CLAUDIEN (De Raedt and Bruynooghe 1993; De Raedt and Dehaspe 1997b)
realizes descriptive induction under the completion semantics (Clark 1978). Given a
definite logic program B and a set O of definite clauses, CLAUDIEN produces a set H
of clauses satisfying

Comp(BUO) = H

where Comp represents Clark’s predicate completion.

Ezample 4.4 Let B = { human(s) } and O = { mortal(s) }. Then, the following clauses
are all possible solutions:

Hy = { mortal(x) + human

(=) },
Hs = { human(z) < mortal(x) },
Hs = { human(z)V mortal(z) < }.

Note that in descriptive induction it is assumed that the universe defined by an
observation together with a background theory is completely specified (De Raedt and
Lavrac 1993).

Definition 4.4 (inductive equivalence in CLAUDIEN) Let By and Bs be two definite
logic programs. Then, By and B> are inductively equivalent in CLAUDIEN if it holds
that

Comp(B1UO) EH iff Comp(B2UO) EH

for any observation O and for any hypothesis H such that By U O and By U O are
consistent.
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Table 1 Comparison of Horn ILP Systems

System language induction  condition

FoiL Datalog Explind Bi1 =w B>
GOLEM definite LP Explnd B1 = B>
PrROGOL Horn LLP Explnd B1 = B>

CLAUDIEN  definite LP Deslnd B1 = B>

Theorem 4.4 (condition for inductive equivalence in CLAUDIEN) Two definite logic
programs B and B> are inductively equivalent in CLAUDIEN iff By = Bs.

Proof 1t is shown that By = Bs iff Comp(B; U O) = Comp(B3 U O) for any clausal
theory O. The proof is similar to Proposition 2.2. ]

The results of Section 4 are summarized in Table 1. Observe that the conditions of
inductive equivalence in FoIL and GOLEM are weaker than the condition of inductive
equivalence in explanatory induction (Theorem 3.2). This is due to the fact that these
systems impose some restrictions on the syntax of background theories, observations
and hypotheses. By contrast, the condition of inductive equivalence in PROGOL and
CLAUDIEN is identical to the one in clausal logic.

5 Inductive Equivalence in Nonmonotonic Logic Programs
5.1 Nonmonotonic Logic Programs

Nonmonotonic logic programs are logic programs with negation as failure (Baral and
Gelfond 1994). We consider the class of extended disjunctive programs (Gelfond and
Lifschitz 1991) in this paper. An estended disjunctive program (EDP) (or simply a
program,) is a set of rules of the form:

Li;--+3 L < Liyy,..., Lm,not Lyyy1,...,n0t Ly (n>m >12>0) (4)

where each L; is a positive/negative literal, i.e., A or =A for an atom A, and not
is negation as failure (NAF). not L is called an NAF-literal. The symbol “” repre-
sents disjunction. The left-hand side of “+—” is the head, and the right-hand side is
the body. For each rule r of the form (4), head(r), body™ (r) and body ™ (r) denote the
sets of literals {L1,...,L;}, {Lit1,...,Lm}, and {Lm41,..., Ln}, respectively. Also,
not_body ™~ (r) denotes the set of NAF-literals {not Ly, +1,...,not Lp}. A disjunction of
literals and a conjunction of (NAF-)literals in a rule are identified with its correspond-
ing sets of literals. A rule r is disjunctive if head(r) contains more than one literal. A
rule 7 is a constraint if head(r) = 0; and r is a fact if body(r) = 0. A program is basic
if no rule contains NAF-literals. A program, rule, or literal is ground if it contains no
variable. A propositional program is a finite set of ground rules. A program P with
variables is a shorthand of its ground instantiation ground(P), the (possibly infinite)
set of ground rules obtained from P by substituting variables in P by elements of its
Herbrand universe in every possible way. A program is called an extended logic pro-
gram (ELP) if it contains no disjunctive rule. An ELP is called a normal logic program
(NLP) if every literal L; appearing in the program is an atom.

A primary difference between nonmonotonic logic programs and clausal theories is
that a rule (4) is not a clause even if it contains no NAF-literal. For instance, a rule
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Ly < Ly has meaning different from —Ls < =Lq or Ly V —La. The rule (4) is inter-
preted as an inference rule rather than an implication formula (Gelfond and Lifschitz
1991). Thus, induction in nonmonotonic logic programs is different from induction in
clausal theories.

The semantics of an EDP is defined by the answer set semantics (Gelfond and
Lifschitz 1991). The literal base Lit is the set of all ground literals in the language of
a program. Suppose a program P and a set of literals S(C Lit). Then, the reduct pPS
is the program which contains the ground rule head(r) < body™ (r) iff there is a rule
r in ground(P) such that body™ (r) NS = (. Given a basic program P, let S be a set
of ground literals that is (i) closed under P, i.e., for every ground rule r in ground(P),
body(r) C S implies head(r) NS # 0; and (ii) logically closed, i.e., it is either consistent
or equal to Lit. An answer set of a basic program P is a minimal set S satisfying both
(i) and (ii). Given an EDP P and a set S of ground literals, S is an answer set of P if
S is an answer set of P°. A program has none, one, or multiple answer sets in general.
The set of all answer sets of P is written as AS(P). Here AS(P) is an antichain set,
i.e., no element S € AS(P) is a proper subset of another element T € AS(P). An
answer set is consistent if it is not Lit. A program P is consistent if it has a consistent
answer set; otherwise, P is inconsistent. In normal logic programs, answer sets are also
called stable models (Gelfond and Lifschitz 1988). A set S of ground literals satisfies a
ground rule r if either S N head(r) # 0, body™ (r)\ S # 0 or body™ (r) N S # 0. When
a rule r contains variables, S satisfies r if S satisfies every ground instance of r. S
satisfies a set R of rules if S satisfies every rule in R. A program P satisfies a set R of
rules if every answer set of P satisfies every rule in R. A program P is consistent if it
has an answer set; otherwise P is inconsistent.

Ezample 5.1 Let P be the program:

p(x) < not q(z),

q(z) « not p(z),
r(a) <

where AS(P) = {{p(a),r(a) }, {q(a),r(a) }}. Then, every answer set satisfies the rule
p(a); g(a) <, while p(a) < r(a) is satisfied by {p(a),r(a) }, but not by {g(a),r(a) }.

5.2 Inductive Equivalence between EDPs

Four different induction frameworks in Section 2.2 are applied to induction in non-
monotonic logic programs. In this section, we consider the following problem setting:

— a background theory B is given as an EDP under the answer set semantics
SEM(B) = AS(B),

— an observation O is a set of rules,

— a hypothesis H is a set of rules.

Note that in case of nonmonotonic logic programs, a background theory B could be
inconsistent. In this case, the introduction of H to B makes B U H consistent. This is
the difference from the case of monotonic background theories. In case of monotonic
theories, an inconsistent B cannot become consistent by introducing any H.
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Ezample 5.2 Let B be the program:
p < not p.

Then, B is inconsistent, i.e., AS(B) = 0. Putting H = {p +}, BU H becomes consis-
tent, i.e., AS(BU H) = {{p}}.

Four different definitions of inductive equivalence are then considered under the
answer set semantics.

Definition 5.1 (inductive equivalence in different frameworks of induction) Let B
and Bs be two programs having the same literal base Lit. Then,

1. B; and B» are inductively equivalent under the answer set semantics in cautious
induction (written B E’éasumd B>) if for any O and any H, O is satisfied by every
S € AS(By U H) iff O is satisfied by every S € AS(Bs U H), where By U H and
By U H are consistent.

2. B; and Bs are inductively equivalent under the answer set semantics in brave
induction (written B Eé,f,nd By) if for any O and any H, O is satisfied by some
S € AS(By U H) iff O is satisfied by some S € AS(By U H), where B; U H and
By U H are consistent.

3. By and By are inductively equivalent under the answer set semantics in learning
from satisfiability (written B E’C‘F‘% Bs) if for any O and any H, B UH UO is
consistent iff Bo U H U O is consistent.

4. B and Bs are inductively equivalent under the answer set semantics in descriptive
induction (written By Eéesslnd By) if for any O and any H, H is satisfied by every
S € AS(B1 UO) iff H is satisfied by every S € AS(B2 U O), where B; UO and
B> U O are consistent.

In each case, we say that a hypothesis H covers (or ezplains) O with respect to
B under the answer set semantics in the induction framework I. Here, I is one of the
four induction frameworks presented above.

Next we provide a program transformation which is useful for subsequent discus-
sion. Given a set O of ground rules, any rule r in O is transformed to the set 2 of
rules:

Gr + L; for every L; € head(r),
Gr < not L; for every L; € body™ (r),
Gr + Ly, for every Ly € body™ (r),

where G is a new ground atom appearing nowhere in B and uniquely associated with
each r. With this setting, the next result holds.

Proposition 5.1 O is satisfied by an answer set of B U H iff for any r € O, G is
included in an answer set of BU H U £2.

Proof O is satisfied by an answer set S of BU H

iff for any = in O, either S N head(r) # 0, body™ (r) \'S # 0 or body (r) N S # 0 for
some S € AS(BUH)

iff BUH U (2 has an answer set T = SU{G: | r € O} for some S € AS(BUH). O
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Thus, any observation O as a set of rules is instantiated to its ground instances
ground(O), which is then transformed to a semantically equivalent observation as a
set of ground atoms.

Proposition 5.2 (relations between different inductive equivalences) The following re-
lations hold between equivalence relations in different induction.

—AS . . —AS
1. By =Caylnd By implies Eé =Bralnd B2-
2. Bl E%rglnd B2 Zﬁ Bl E';4F§ B2.
8. B1 =caling B2 if B1 =peging B2-

Proof The results (1) and (3) follow from definitions. We show (2). If By E’L“F% Bs,
for any H and any O, By UH U QU {+ notG, | r € ground(O)} is consistent
iff BbUHURU {4+ notGy | r € ground(O)} is consistent. Put U = {G | r €
ground(O) }. Then, for any H and any U, U C S for some consistent answer set S
of By UH U R iff U C T for some consistent answer set T of By U H U (2. Hence,
By Eérglnd Bs. The only-if part clearly holds. O

Proposition 5.2(2) presents that the notions of inductive equivalence in brave in-
duction and learning from satisfiability coincide under the answer set semantics.
We proceed to build conditions for inductive equivalence between EDPs.

Theorem 5.3 (condition for inductive equivalence under AS in cautious induction)
Let By and Ba be any EDPs. Then, By =s Ba implies By E(Ajilnd Bs. The converse
implication also holds for any H such that AS(B1 U H) and AS(B2 U H) are finite
sets.”

Proof If By =s Ba, AS(B1 UH) = AS(B2 U H) holds for any set H of rules. In this
case, O is satisfied by every answer set of By U H iff O is satisfied by every answer set
of By U H for any O and H such that B; U H and By U H are consistent. Hence, B
and Bs are inductively equivalent in cautious induction.

Conversely, suppose that B; and Bs are inductively equivalent in cautious induc-
tion. Then, it holds that O is satisfied in every answer set of By U H iff O is satisfied
in every answer set of Bo U H for any O and any H such that By U H and By U H are
consistent. Suppose that there is a set S such that S € AS(B1 UH)\ AS(B2 U H) for
some H. For any answer set T; of Bo U H, put

UG\T)=U and |J(T:\5) =V

k2
For some non-empty finite subset of U’ C U and V' C V, construct the constraint
C: « U, notV'

where U’ or V' is identified with the conjunction of literals included in each set. By
U'CSand V'NS=0,S does not satisfy C.

If every answer set T; of By U H satisfies C, this contradicts the assumption that
B and Bs are inductively equivalent. Else if some answer set T; of By U H does not
satisfy C, U’ C T; and V' N T; = (. For every such T, either S\ T; # 0 or T; \ S # 0

5 At the moment, the result is open when a program has an infinite number of answer sets.
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holds by S ¢ AS(B3 U H). For every T; satisfying S\ T; # 0, take one literal L; from
S\ T; and collect such a literal from each T;. Put the collection as W:

Wy =|J{Li | Li € S\ Ti where S\T; # 0 }.

Similarly, for every T; satisfying T; \ S # 0, take one literal L; from T; \ S and collect
such a literal from each T;. Put the collection as Ws:

WQZU{Li | L; € T;\ S where T; \ S # 0 }.

Here, W1 and W> are finite set, because B> U H has a finite number of answer sets.
Suppose the constraint
D: « U Wi, notV, not Wy .

As Wy € T; or Wo NT; # 0 holds for any T;, T; satisfies D. Thus, D is satisfied by
every answer set of Bo U H. On the other hand, W; C S and Wy NS = ) imply that
S does not satisfy D. Then, D is not satisfied by some answer set of By U H. This
contradicts the assumption that B; and By are inductively equivalent. ]

Theorem 5.4 (condition for inductive equivalence under AS in brave induction) Let
By and By be any EDPs. Then, B; =44 B2 iff B1 =s Ba.

Proof When B; and Bs are inductively equivalent in brave induction, it holds that O
is satisfied in an answer set of B; U H iff O is satisfied in an answer set of By U H for
any O and any H such that By U H and By U H are consistent. Then, for any set O
of ground literals, O C S for an answer set S of By UH iff O C T for an answer set T
of Bo U H. Putting O = S, S is an answer set of By U H iff S C T for an answer set T
of By U H (%). Putting O = T, T is an answer set of Bo U H iff T C S’ for an answer
set S’ of By U H (1). By (*) and (1), S is an answer set of B UH iff S C T C S’ for
an answer set T of Bo U H and for an answer set S’ of B; U H. Since AS(B; U H) is
an antichain set, S = T'. Thus, S is an answer set of By U H iff S is an answer set of
By U H for any H. Hence, By and B> are strongly equivalent.

Conversely, if By =s Bs, AS(B1 UH) = AS(B2 U H) for any set H of rules. Then,
O is satisfied in an answer set of B; U H iff O is satisfied in an answer set of Bo U H
for any set O of rules. Hence, B E’ég,nd B> holds. O

Theorem 5.5 (condition for inductive equivalence under AS in learning from satisfi-
ability) Let By and By be any EDPs. Then, By ={vs B> iff Bi =s Bo.

Proof The result holds by Theorems 5.2(2) and 5.4. O

The complexity of testing strong equivalence of two propositional EDPs is coNP-
complete (Turner 2003). Hence we have the next result.

Proposition 5.6 (complezity for deciding inductive equivalence between EDPs) De-
citding inductive equivalence of two propositional EDPs is coNP-complete under the
answer set semantics in four different induction frameworks.

5.3 Inductive Equivalence in Nonmonotonic ILP Systems

In this section, we investigate inductive equivalence in two nonmonotonic ILP systems.
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5.8.1 Induction of Stable Models

Otero (2001) characterizes induction problems in normal logic programs (NLPs) under
the stable model semantics. Recall that an NLP is a set of rules of the form:

Ay « Aj,..., Am,notApq1,...,not An (n>m >0) (5)

where each A; is an atom. Answer sets coincide with stable models in NLPs, so that
Otero’s framework is considered a special case of induction under the answer set seman-
tics. Otero introduces different types of induction for positive/negative observations,
but here we consider the so-called induction from non-complete sets which is the usual
ILP setting for positive observations.

Suppose a background theory B as an NLP, and a set O of ground atoms as a
positive observation such that O is not satisfied by B. The goal is to find a set H
of rules satisfying the condition that O is satisfied by every stable model of B U H.
Thus, Otero’s framework realizes cautious induction in nonmonotonic logic programs.
An interpretation M is a monotonic model of an NLP if M satisfies every rule in B.
A stable model is a monotonic model, but not vice versa. Given an observation O, an
interpretation M is an ezxtension of O iff O C M. He then captures the computation
of H as an extension M of O that becomes a stable model of BU M. That is, H = M
satisfying O C M and M € AS(BU M) becomes a solution. Note that in this definition
a hypothesis H is given as a set of ground atoms.

Let ISM (B, O) be the collection of H defined as above. Then, inductive equivalence
in induction of stable models (ISM) is defined as follows.

Definition 5.2 (inductive equivalence in ISM) Two NLPs By and Bs are inductively
equivalent in ISM if ISM(B1,0) = ISM (B>, 0) for any set O of ground atoms.

Proposition 5.7 (Otero 2001) Given an NLP B, M is a monotonic model of B iff
M is a stable model of BU M.

Let MonMod(B) be the set of monotonic models of B. Then we have the following
result.

Theorem 5.8 (condition for inductive equivalence in ISM) Two NLPs By and By are
inductively equivalent in ISM iff MonMod(B1) = MonMod(Bs).

Proof Suppose that B; and Bs are inductively equivalent in ISM. For any M €
ISM(B1,0), M is a stable model of By U M and a monotonic model of By (Proposi-
tion 5.7). Then, ISM (B1,0) = ISM (B>, 0) implies MonMod(B1) = MonMod(B2).
Conversely, if MonMod(B1) = MonMod(B3), for any set M of atoms, M is a stable
model of By U M iff M is a stable model of By U M. Then, for any set O of ground
atoms, M (D O) is a stable model of By UM iff M is a stable model of By U M. Hence,
ISM(By,0) = ISM(Bs, 0). 0

Ezample 5.3 Let By = {p < notq} and By = {q < notp}. For O = {p}, put its
extension as M = {p}. Then, H = {p «+ } becomes a solution in both B; and Bs.
Note that By #Zw B2 but MonMod(B1) = MonMod(B>).

Since AS(B) C MonMod(B), the above result implies that inductive equivalence
in ISM does not require the condition of strong nor weak equivalence. It is worth noting
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that induction in ISM can be reformulated using classical logic. Given an NLP B, con-
sider a clausal theory C1(B) which is obtained from B by replacing every NAF-literal
not A in (5) with a negative literal = A. Then, monotonic models of B coincide with
Herbrand models of CI(B). Thus, the inductive equivalence in ISM is translated into
the problem of inductive equivalence under the classical semantics, and Theorem 5.8
implies that ISM (B1,E) = ISM(Bs, E) iff Cl(B;) = Cl(B3).

5.8.2 Brave Induction from Answer Sets

Sakama and Inoue (2009b) introduce an algorithm for brave induction in nonmonotonic
logic programs. Given a background theory B as an EDP and a set O of ground
literals as an observation, the algorithm BRAIN™! computes a set H of rules as a
hypothesis. Before presenting an algorithm, a couple of notions are in order. Given a
literal L, pred(L) and const(L) represent the predicate of L and the constants appearing
in L, respectively. Let Ly be a ground literal and S a set of ground literals. Then,
L, € S is relevant to Ly if either (i) const(Lg) Nconst(Ly) # 0, or (ii) for some literal
Ly € S, const(Ly) N const(L2) # 0 and Lo is relevant to Lg. Otherwise, Ly € S is

irrelevant to Lg. Rules rq,...,r, are comparable if there is a predicate appearing in
every head(r1), ..., head(ry).
BRAIN™! constructs hypotheses in the following two steps.6 First, for a consistent

answer set S of B, construct a finite and consistent set Rg of ground rules satisfying
the following conditions. For any rule r € Rg,

1. head(r) C O and for any L € O, there is a rule r € Rg such that head(r) = {L},

2. body™*(r) C P where P = {L | L € S and L is relevant to the literal in head(r)},

3. body (r) C N where N={L | L € Lit\ (S U ©) and L is relevant to the literal
in head(r) and appears in ground(B) }

where ® = {L | L € Lit and pred(L) appears in O }. In the second and third
conditions, we put body™ (r) = P and body~(r) = N if P and N are finite sets.
Second, for the set Rg of rules obtained as above, Rg is partitioned as Rg =
R; U---U Ry where each R; (1 <4 < n) is a comparable set of ground rules. Then,
the least generalization under subsumption of each R; is computed and collected as’

lgs(Rs) = {lgs(R1), ..., lgs(Rn)}.
lgs(Rg) is a solution of brave induction if B Ulgs(Rg) is consistent.
Ezample 5.4 Suppose the background theory B:

innocent(x) < not guilty(z),
guilty(z) < not innocent(x),
suspect(a) <,
suspect(b) +,

6 The algorithm in (Sakama and Tnoue 2009b) has additional two steps for constructing
weak hypotheses and optimization, but we omit these steps here for simplicity reasons.

7 The Igs of rules is computed in the same way as the case of clauses.
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which has four answer sets:

Sy = {suspect(a), suspect(b), guilty(a), guilty(db)},

So = {suspect(a), suspect(b), guilty(a),innocent(b)},

S3 = {suspect(a), suspect(b), innocent(a), guilty(b)},
S4 = {suspect(a), suspect(b), innocent(a), innocent(b)}.

Given the observation O = {charged(a),charged(b)}, the set of ground rules

Rg, ={ charged(a) < suspect(a), guilty(a), not innocent(a),
charged(b) < suspect(b), guilty(b), not innocent(b) }

is constructed using the answer set Si. The lgs of Rg, becomes
lgs(Rs,) = { charged(z) < suspect(x), guilty(x), not innocent(x) },

then BUlgs(Rg,) has the answer set S U {charged(a), charged(b)} which satisfies O.
g

By the definition, different hypotheses are constructed by different answer sets.

Now we define inductive equivalence in BRAIN™®? as follows.

Definition 5.8 (inductive equivalence in BRAIN™*!) Two EDPs B; and By are induc-
tively equivalent in BRAIN™ if for any set O of ground literals, lgs(Rg) = lgs(Rr)
holds for some consistent S € AS(Bj) and some consistent T € AS(Bs3) such that
B; Ulgs(Rg) and B2 Ulgs(Rr) are consistent.

Then we have the following result.

Theorem 5.9 (condition for inductive equivalence in BRAIN™') Two EDPs B, and
By are inductively equivalent in BRAIN™? iff B| =5 Bs.

Proof Suppose two ground programs B; and Bs which are not strongly equivalent.
Put O = {L} such that L appears nowhere in By, but B2 contains the constraint
< L. With this setting, for some answer set S of By, Rg includes a rule r such that
head(r) = L, body™ () C S and body™ (r) N S = 0. Also, for some answer set T of Bo,
Ry includes a rule r such that head(r) = L, body™ (r) C T and body™ (r)NT = (. In
this case, however, By U Rg is consistent, but Bs U R is inconsistent. Hence, By and
By are not inductively equivalent. The converse implication clearly holds. O

6 Discussion
6.1 Comparison of Conditions for Inductive Equivalence

The results of this paper are summarized in Table 2. When the representation language
is clausal logic, logical equivalence is necessary and sufficient for inductive equivalence
between two background theories in each induction under both classical and the mini-
mal model semantics. By contrast, when the representation language is nonmonotonic
logic programming, strong equivalence is necessary and sufficient for inductive equiva-
lence between two background theories in each induction under the answer set seman-
tics. Since By = Bs iff By =5 Bs in clausal logic under both SEM(B) = Mod(B)
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Table 2 Comparison of Conditions for Inductive Equivalence

Representation language (semantics)
Induction ~ Clausal logic (Mod, MM) Nonmonotonic LP (AS)

Caulnd Bl = B2 Bl =s B2
Bralnd B1 = Bz Bl =s Bz

LFS Bl = B2 Bl =s B2
Desind B1 = B> B1 =5 Ba

and SEM (B) = MM (B), we can conclude that strong equivalence of two background
theories is necessary and sufficient for inductive equivalence in each induction. On the
other hand, the condition of strong equivalence is sometimes relaxed to weak equiv-
alence or other weaker equivalence relations in particular induction algorithms under
restricted problem settings.

From the computational viewpoint, testing strong equivalence of propositional
EDPs is converted to the problem of propositional entailment in classical logic (Lin
2002). The problem of testing strong equivalence is then solved using existing SAT
solvers. For predicate programs with a finite domain, testing strong equivalence is also
possible by instantiating a program into a finite propositional one. There is a system
for testing strong equivalence of function-free finite nonmonotonic logic programs (Jan-
hunen and Oikarinen 2004). Existence of no procedure for testing strong equivalence of
logic programs with functions would restrict practical application of inductive equiva-
lence in ILP. Nevertheless, inductive equivalence is efficiently testable when background
theories are given as function-free finite Horn logic program (or Datalog) or a database
that is a collection of propositional sentences.

6.2 Relation to Abductive Equivalence

Inoue and Sakama (2005, 2006a,b) have studied equivalence relations in abductive
frameworks. Given a background theory B and a set A of candidate hypotheses (called
abducibles), an abductive framework is defined as a tuple ( B, A }. Two abductive frame-
works (B, A1 ) and ( Ba, Ay ) are called ezplainable equivalent if, for any observation
O, there is an explanation of O in ( By, A; ) iff there is an explanation of O in ( Ba, As ).
On the other hand, two programs are called ezplanatorily equivalent if, for any observa-
tion O, O is an explanation of O in ( By, A; ) iff O is an explanation of O in ( By, A3 ).
The former compares explainability of observations in different background theories,
while the latter compares explanation contents of observations. Explanatory equiva-
lence is stronger than explainable equivalence, and the former implies the latter. The
paper (Inoue and Sakama 2005) introduces two equivalence notions for first-order ab-
duction and abductive logic programming (ALP), and the paper (Inoue and Sakama
2006a) applies the notion to eztended abduction of (Inoue and Sakama 1995). The paper
(Inoue and Sakama 2006b) also argues equivalence between minimal explanations.
Comparing (Inoue and Sakama 2005, 2006a,b) with our present work, some in-
teresting connections are observed. When underlying logic is first-order logic, logical
equivalence of two theories is a necessary and sufficient condition for explanatory equiv-
alence in abduction. When a background theory is represented by a nonmonotonic logic
program, on the other hand, (B, A1) and ( By, A2 ) are explanatorily equivalent iff
By and Bs are strongly equivalent. Those results have connection to the results of
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Theorems 3.3, 3.7, and 5.4 of this paper. However, there are some important differ-
ences between the previous studies on abductive equivalence and the results of this
paper. First, the framework of ALP in (Inoue and Sakama 2005, 2006a,b) characterizes
equivalence relations in brave abduction. That is, given a logic program B, a hypoth-
esis H explains an observation G if G is true in an answer set of B U H. This paper
characterizes the problem of inductive equivalence not only in brave induction, but
also in other forms of induction. Second, in abductive frameworks a hypothesis space
A is prespecified as abducibles and possible explanations for a given observation are
constructed as a subset of abducibles. The existence of A in abductive logic programs
results in characterization by relative strong equivalence, i.e., two programs B and B»
are explanatory equivalent iff they are strongly equivalent with respect to A. Moreover,
in abductive logic programming, abducibles and observations are usually restricted to
(ground) literals. In ILP, on the other hand, hypotheses and observations are general
rules rather than facts. Besides these differences, both abduction and induction re-
quire strong equivalence of two (nonmonotonic) logic programs to identify the results
of abductive/inductive inference. The essence of this lies in the fact that abduction
and induction are both ampliative reasoning and extend theories. Strong equivalence
takes the influence of addition of a rule set to each program into account, so that it
succeeds in characterizing the effect of abduction/induction that are not captured by
weak equivalence of programs. In (Lifschitz et al. 2001), it is argued that strong equiv-
alence is useful to simplify a part of a program without looking at the other parts. On
the other hand, a series of studies (Inoue and Sakama 2005, 2006a,b) and the result of
this paper reveal that strong equivalence has another important applications for testing
equivalence of background theories in abductive and inductive logic programming.

6.3 Program Development in ILP

As presented in Section 4, there are many ILP systems which handle Horn logic pro-
grams as background theories. In Horn logic programs, program transformations which
preserve weak equivalence of programs are popularly used for optimizing programs.
Partial evaluation or unfold/fold transformations are of this kind (Tamaki and Sato
1984; Pettorossi and Proietti 1994). For instance, given the program

Bl :{p(l‘)(—q(l’), q(l‘)(—’f‘(l‘), r(a)(—},
unfolding the first clause by the second one results in the program
By = {p(x) < r(z), q(z) < r(z), r(a)«}

On the other hand, in Bs folding the first clause by the second one results in the
program Bjp. By and By have the same least model thereby weakly equivalent, but
not logically equivalent. In ILP, unfolding is often used as an operator for specializa-
tion (Bostrom and Idestam-Almquist 1994), and folding is used as an operator for
generalization under the name of inverse resolution (Muggleton and Buntine 1992).
In Section 3.2 we observe that logical equivalence of two clausal theories is necessary
and sufficient to guarantee inductive equivalence under the minimal model semantics.
Since weak equivalence provides a weaker condition than logical equivalence (Propo-
sition 2.3), the condition of weak equivalence of two clausal theories is not sufficient
for preserving inductive equivalence under the minimal model semantics in general.
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This result brings an important implication in program development in ILP that basic
program transformations, such as unfold/fold transformations, are not applicable for
optimizing background theories in ILP. If used, those transformations change solutions
of induction in general. In the above example, B; and Bs are not inductively equivalent
in explanatory induction as H = {¢(a) < } explains p(a) in B; but does not in Bs.
Nevertheless, those transformations are still effective as far as one uses induction al-
gorithms that require the condition of weak equivalence. In Section 4, we observe that
FoiL and GOLEM are of this kind, but PROGOL and CLAUDIEN are not. It is also known
that unfold/fold transformations do not preserve strong equivalence of nonmonotonic
logic programs (Osorio et al. 2001), so that those transformations cannot be used for
program optimization in nonmonotonic ILP without changing solutions in general.

6.4 Verification of Algorithms

If an induction algorithm produces different hypotheses from two different background
theories, those theories are considered to be inductively inequivalent. It may happen,
however, that some algorithm may produce different hypotheses from two background
theories due to its incompleteness/incorrectness. If two strongly equivalent programs
induce different hypotheses in face of some observation, it indicates that the induc-
tion algorithm is incomplete or incorrect. In this way, inductive equivalence would be
used for testing correctness/completeness of induction algorithms. We consider that
any induction algorithm should compute the same hypotheses from two different back-
ground theories as far as they are inductively equivalent. With this regard, inductive
equivalence has an application to verification of induction algorithms.

For another application, inductive equivalence would be used for comparing capa-
bilities of different induction algorithms. Let a(B, O) be the set of hypotheses induced
by an algorithm a using a background theory B and an observation O. For two dif-
ferent induction algorithms a1 and as under a common problem setting, suppose that
a1(B1,0) = a1(Bs,0) implies as(B1,0) = as(B2,0), but not vice versa. In this
case, o1 is considered inductively more sensitive than a9 in the sense that oy may dis-
tinguish different background theories that are not distinguished by as. For instance,
suppose any ground Horn logic program B and any set O of ground atoms. In this
problem setting, we can say that PROGOL is inductively more sensitive than GOLEM,
since bot(B1, E) = bot(Bsy, O) implies rlgs(Mp, ,0) = rlgs(Mp,, O) but not vice versa.
(This is due to the fact that By = By implies By =« Bs but not vice versa.) Thus,
inductive equivalence is also useful for evaluating capabilities of induction algorithms.

7 Concluding Remarks

This paper has studied equivalence issues in induction and inductive logic program-
ming. We introduced the notion of inductive equivalence which compares hypotheses
that explain observations with respect to different background theories. Two different
logics for representation languages — clausal theories and nonmonotonic logic program-
ming, and four different frameworks of induction — cautious induction, brave induction,
learning from satisfiability, and descriptive induction, were considered. The results of
this paper show that logical equivalence is necessary and sufficient for inductive equiv-
alence in clausal theories, while strong equivalence is necessary and sufficient in non-
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monotonic extended disjunctive programs. On the other hand, we also observed that
existing Horn ILP systems sometimes require weaker conditions of equivalence under
restricted problem settings. We addressed that inductive equivalence has potential ap-
plications for verification and evaluation of induction algorithms. We also argued that
program transformations which are popularly used in logic programming generally do
not preserve inductive equivalence of programs. This is an important caution for pro-
gram development in ILP which has been receiving little attention in the field.

Inductive equivalence considered in this paper guarantees coincidence of every hy-
pothesis induced by different background theories. In practice, however, the exact co-
incidence of whole hypotheses is not always requested and one may be interested in
preserving some preferred hypotheses. The criteria of preference of hypothesis depends
on applications and it is often specified under the name of induction bias. In the context
of abduction, preferred hypotheses are referred to “best explanations”. In (Inoue and
Sakama 2006b), it is proved that two abductive theories are explanatory equivalent
iff they have the same minimal ezplanations for any observation. Sakama and Inoue
(1995) introduce several program transformations which preserve best explanations
in abductive logic programming. Inductive equivalence of preferred hypotheses and
program transformations for preserving those hypotheses are left for future research.
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