
Representing Argumentation Frameworks in
Answer Set Programming

Chiaki Sakama
Department of Computer and Communication Sciences

Wakayama University, Japan
sakama@sys.wakayama-u.ac.jp

Tjitze Rienstra
Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg
tjitze@gmail.com

Abstract

This paper studies representation of argumentation frameworks (AFs) in an-
swer set programming (ASP). Four different transformations from AFs to logic
programs are provided under the complete semantics, stable semantics, grounded
semantics and preferred semantics. The proposed transformations encode labelling-
based argumentation semantics in a simple manner, and different semantics of AFs
are uniformly characterized by stable models of transformed programs. We apply
transformed programs to solving AF problems such as query-answering, enforce-
ment of arguments, agreement or equivalence of different AFs. Logic program-
ming encodings of AFs are also used for representing assumption-based argumen-
tation (ABA) in ASP. The results of this paper exploit new connections between
argumentation theory and logic programming, and enable one to perform various
argumentation tasks using existing answer set solvers.

1 Introduction
Logic programming and argumentation theory are two different formalisms for rep-
resenting knowledge, while close connections in their semantics have been revealed
by several researchers [34]. Dung [13] introduces a transformation from logic pro-
grams (LPs) to (abstract) argumentation frameworks (AFs) and shows that stable mod-
els [21] (resp. the well-founded model [35]) of a logic program correspond to stable
extensions (resp. the grounded extension) of a transformed argumentation framework.
Further results show that similar correspondences exist between 3-valued stable mod-
els of LPs [29] and complete extensions of AFs [38], and regular models of LPs [39]
and preferred extensions of AFs [8]. In addition, Dung [13] introduces a converse
transformation from AFs to LPs, and shows that stable extensions (resp. the grounded

1

extension) of an AF correspond to stable models (resp. the well-founded model) of a
transformed logic program. Similar results are known that relate preferred, complete,
or other extensions of AFs to their corresponding semantics of transformed logic pro-
grams [12, 18, 19, 20, 25, 36, 38]. In his transformation from AFs to LPs, Dung uses
an LP as a meta-interpreter for computing arguments. This idea is inherited by studies
[18, 19, 20, 36] which use LPs as meta-interpreters for processing AFs given as input.
An important difference is that Dung characterizes different semantics of AFs in terms
of different semantics of LPs, while those studies [18, 19, 20, 36] characterize differ-
ent semantics of AFs in terms of the answer set semantics of LPs. The latter type of
characterization is important in the sense that it enables one to use existing solvers for
answer set programming (ASP) [6] for computing different semantics of AFs. On the
other hand, encoding the semantics of AFs in meta-interpretative LPs results in quite
complicated programs, especially for problems under the preferred semantics that are
located at the second level of the polynomial hierarchy, and the resulting programs are
hardly accessible for non-experts in ASP [18].

In this paper, we introduce transformation schemes from AFs to LPs such that dif-
ferent semantics of AFs (i.e., complete, stable, grounded, preferred) are characterized
by the answer set semantics of LPs. The proposed schemes are simple in the sense that
encodings are easily readable and are relatively small in size, and they are also uni-
form in the sense that encodings are applied to different semantics of AFs with small
modifications. Different from [18, 19, 20, 36], we do not take the meta-interpretative
approach, but translate an argumentation framework into a logic program at the object
level. In the object level transformation, arguments and attack relations in an AF are
directly represented by rules in a transformed program, and different AFs produce dif-
ferent LPs in general. This viewpoint is similar to a translation given in [8, 38], where
arguments and attack relations are encoded by rules of logic programs. The translation
given in [8, 38], however, maps different semantics of AFs into different semantics
of LPs, so that it does not address the computation of different semantics of AFs in
terms of ASP. Among the meta-interpretative ASP approaches, [18, 19, 20] compute
extension-based semantics of AFs, while [36] computes labelling-based semantics of
AFs. It is known that there is a one-to-one correspondence between extension-based
semantics and labelling-based semantics of AFs [7]. While an extension-based se-
mantics results in sets of accepted arguments, a labelling-based semantics assigns to
each argument one of three labels accepted, rejected or undecided, and thus permits
the distinction between rejected and undecided arguments. In this paper, we compute
labelling-based semantics of AFs in terms of ASP. We next address applications of
our transformation scheme in solving several argumentation-related problems. These
are (i) query-answering, (ii) enforcement of arguments, (iii) agreement among differ-
ent AFs, and (iv) equivalence of AFs. We also apply our scheme for representing
assumption-based argumentation (ABA) [5, 15] in ASP. We compare our encodings
with existing ASP-encodings in the literature and show that our encoding is more com-
pact than others.

The rest of this paper is organized as follows. In Section 2 we review the nec-
essary basic notions of argumentation frameworks and answer set programming. In
Section 3 we introduce transformation schemes from AFs to LPs under the complete,
stable, grounded and preferred semantics. Section 4 addresses several applications of

2

the transformation schemes. Section 5 compares the proposed encoding with exist-
ing ASP encodings in the literature. Section 6 discusses related issues and Section 7
summarizes the paper.

2 Preliminaries

2.1 Argumentation Framework
In this section we introduce the necessary basics concerning abstract argumentation
frameworks. The definitions presented here are based on [7, 13].

Definition 2.1 (argumentation framework) Let U be the universe of all possible ar-
guments. An argumentation framework (AF) is a pair (Ar, att) where Ar is a finite
subset of U and att ⊆ Ar × Ar. We say that a attacks b iff (a, b) ∈ att. For x ∈ Ar,
define x− = { y | (y, x) ∈ att }.

An argumentation framework (Ar, att) is represented by a directed graph in which
vertices are arguments inAr and a directed arc from a to b exists whenever (a, b) ∈ att.

Definition 2.2 (labelling) A labelling of AF = (Ar, att) is a (total) function L :
Ar → { in, out, und }.

When L(a) = in (resp. L(a) = out or L(a) = und) for an argument a ∈ Ar,
it is written as in(a) (resp. out(a) or und(a)). In this case, the argument a is said
to be accepted (resp. rejected or undecided) in L. We call in(a), out(a) and und(a)
labelled arguments. A labelling L of AF = (Ar, att) is also represented as a set of
labelled arguments S = { `(x) | L(x) = ` for x ∈ Ar where ` ∈ {in, out, und} }.

Definition 2.3 (complete labelling) A labelling L of AF = (Ar, att) is a complete
labelling if for each argument a ∈ Ar, it holds that:

• L(a) = in iff L(b) = out for every b ∈ Ar such that (b, a) ∈ att.

• L(a) = out iff L(b) = in for some b ∈ Ar such that (b, a) ∈ att.

By definition it follows that an argument is undecided in a complete labelling if and
only if none of its attackers is labelled in, and at least one of its attackers is labelled
und.

Definition 2.4 (stable, grounded, preferred labelling) Let L be a complete labelling
of AF = (Ar, att). Put in(L) = {x | L(x) = in for x ∈ Ar }, out(L) = {x |
L(x) = out for x ∈ Ar } and und(L) = {x | L(x) = und for x ∈ Ar }.

• L is a stable labelling iff und(L) = ∅.

• L is a grounded labelling iff in(L) is minimal with respect to set inclusion
among all complete labellings of AF .

3

• L is a preferred labelling iff in(L) is maximal with respect to set inclusion
among all complete labellings of AF .

The grounded or preferred labelling is also characterized using out and und as follows
[7].

• L is a grounded labelling iff out(L) is minimal with respect to set inclusion
among all complete labellings of AF iff und(L) is maximal with respect to set
inclusion among all complete labellings of AF .

• L is a preferred labelling iff out(L) is maximal with respect to set inclusion
among all complete labellings of AF .1

There is a one-to-one correspondence between the set in(L) of a complete (resp.
stable, grounded, preferred) labelling L of AF and a complete (resp. stable, grounded,
preferred) extension of AF [7].

2.2 Answer Set Programming
A logic program (LP) considered in this paper is a finite set of rules of the form:

a1 ∨ · · · ∨ al ← al+1 , . . . , am, not am+1 , . . . , not an (n ≥ m ≥ l ≥ 0) (1)

where each ai is a ground atom. not is negation as failure (NAF) and not a is called
an NAF-literal. The left-hand side of← is the head, and the right-hand side is the body.
For each rule r of the above form, head(r), body+(r), and body−(r) denote the sets
of atoms {a1, . . . , al}, {al+1, . . . , am}, and {am+1, . . . , an}, respectively. A rule r is
a constraint if head(r) = ∅; and r is a (disjunctive) fact if body+(r) = body−(r) = ∅.
We often write a rule with variables as a shorthand of its ground instances. A logic
program is simply called a program. A program P is called a normal program if
| head(r) | ≤ 1 for every rule r in P . A program P is called a positive program if
body−(r) = ∅ for every rule r in P . A positive program P is called a Horn program if
|head(r) | ≤ 1 for every rule r in P .

The semantics of a program is defined by the stable model semantics (or answer
set semantics) [21, 22]. Let B be the Herbrand base of a program. An interpretation
I ⊆ B satisfies a rule r of the form (1) if body+(r) ⊆ I and body−(r) ∩ I = ∅
imply head(r) ∩ I 6= ∅. In particular, I satisfies a constraint r such that head(r) = ∅
if body+(r) \ I 6= ∅ or body−(r) ∩ I 6= ∅. An interpretation satisfying every rule
in a program is a model of the program. Given a positive program P , a model M
of P is minimal if there is no model N of P such that N ⊂ M . Given a program
P , an interpretation I is a stable model of P if it coincides with a minimal model
of the positive program (called a reduct of P with respect to I): P I = { a1 ∨ · · · ∨
al ← al+1, . . . , am | (a1 ∨ · · · ∨ al ← al+1 , . . . , am, not am+1 , . . . , not an) ∈
P and {am+1, . . . , an} ∩ I = ∅ }. Stable models coincide with minimal models
in a positive program. A program may have no, one, or multiple stable models in

1A labelling L in which und(L) is minimal with respect to set inclusion among all complete labellings
of AF is not a preferred labelling in general. Instead, such a labelling is a semi-stable labelling [7].

4

general. A program is consistent if it has at least one stable model; otherwise, the
program is inconsistent. A stable model is also called an answer set. Representing
knowledge by logic programs under the stable model semantics is called answer set
programming (ASP) [6]. In this paper, we use the terms logic programming and answer
set programming interchangeably.

3 Transforming AFs to LPs
In this section we present transformations from AFs to LPs under the complete, stable,
grounded and preferred semantics. We first introduce some basic concepts used in
these transformations. Given an argumentation framework AF = (Ar, att), we define
BAr to be the set of all labelled arguments in AF :

BAr = { in(x), out(x), und(x) | x ∈ Ar }.

We view Ar as a set of constants and consider BAr as the Herbrand base on which a
logic program is constructed. The following definition introduces a transformation of
an argumentation framework AF into a set ΓAF of rules.

Definition 3.1 (rules for AF) Given AF = (Ar, att), the set ΓAF of rules is defined
as follows:

ΓAF = { in(x)← out(y1), . . . , out(yk)

| x ∈ Ar and x− = { y1, . . . , yk} (k ≥ 0) } (2)
∪ { out(x)← in(y) | (y, x) ∈ att } (3)
∪ {← in(x), not out(y) | (y, x) ∈ att } (4)
∪ {← out(x), not in(y1), . . . ,not in(yk)

| x ∈ Ar and x− = { y1, . . . , yk} (k ≥ 0) }. (5)

The rule (2) states that an argument x is labelled in if every attacker y1, . . . , yk
of x is labelled out. The rule (3) states that an argument x is labelled out if there
is an attacker y which is labelled in. The constraint (4) states that every in-labelled
argument x has no attacker y which is not labelled out. The constraint (5) states that
every out-labelled argument x has at least one attacker yi (1 ≤ i ≤ k) which is
labelled in. (4) and (5) represent the admissibility condition of [7]. Note that when an
argument x has no attacker (x− = ∅), the rule (2) becomes the fact

in(x)←

which states that the argument x, which has no attackers, is always labelled in. Also
when x− = ∅, the rule (5) becomes the constraint

← out(x)

which states that the argument x, which has no attackers, cannot be labelled out.
The program ΓAF serves as the core in encoding different semantics of AFs in LPs

as set out in the remainder of this section.

5

3.1 Complete Semantics
The transformation of AFs to LPs under the complete semantics is captured by the
following definition.

Definition 3.2 (AF program under the complete semantics) GivenAF = (Ar, att),
an AF-program under the complete semantics ΠC

AF is defined as follows:

ΠC
AF = ΓAF ∪ { in(x) ∨ out(x) ∨ und(x)← | x ∈ Ar } (6)

∪ {← in(x), out(x) | x ∈ Ar }. (7)

The rules of ΓAF represent the necessary and sufficient condition of in or out
labellings under the complete labelling of Definition 2.3. In addition, the disjunctive
fact (6) states that every argument is labelled by either in, out or und. The con-
straints (7) state that each argument cannot take in and out labellings at the same time.
Note that we do not need constraints such as “← in(x), und(x)” or “← out(x), und(x)”.
This is because und(x) does not appear in any rule except (6), so any model containing
both in(a) and und(a) (or out(a) and und(a)) for some a ∈ Ar is not minimal. We
will consider stable models of ΠC

AF that are minimal, and those non-minimal models
are automatically excluded. The transformed program encodes the complete labelling
of an AF.2

Theorem 3.1 Let AF = (Ar, att) be an argumentation framework and ΠC
AF an AF-

program under the complete semantics. Then the complete labellings of AF coincide
with the stable models of ΠC

AF .

Proof: Suppose a complete labelling L of AF . By Definition 2.3, L(x) = in for
x ∈ Ar if L(y) = out for every y ∈ x−. This sufficient condition of L(x) = in

is represented by the rule (2) of ΓAF . On the other hand, the necessary condition
of L(x) = in is stated as “if L(x) = in for x ∈ Ar then L(y) = out for every
y ∈ x−”, which is rephrased by the statement “it is impossible to be L(x) = in for
x ∈ Ar and L(y) 6= out for some y ∈ x−”. The statement is represented by the
constraint (4) of ΓAF . Likewise, L(x) = out for x ∈ Ar iff L(y) = in for some
y ∈ x−. The sufficient condition of L(x) = out is represented by the rule (3) of ΓAF ,
and the necessary condition of L(x) = out is represented by the constraint (5) of ΓAF .
The fact that L is a total function from Ar to { in, out, und } is represented by the
disjunctive facts (6) and the constraints (7). Thus, L(a) = in (resp. L(a) = out) for
a ∈ Ar iff in(a) ∈M (resp. out(a) ∈M) for some stable model M of ΠC

AF . Finally,
L(x) = und for x ∈ Ar iff L(x) 6= in and L(x) 6= out. If ΠC

AF has a stable model
M such that in(a) 6∈ M and out(a) 6∈ M for some a ∈ Ar, then und(a) ∈ M by
the disjunctive fact (6). On the other hand, if ΠC

AF has a stable model M such that
in(a) ∈M or out(a) ∈M for some a ∈ Ar, then M satisfies the disjunctive fact (6)
for x = a thereby und(a) 6∈ M by the minimality of stable models. Thus, for any
a ∈ Ar, und(a) ∈M iff neither in(a) 6∈M nor out(a) 6∈M for any stable model M
of ΠC

AF . Hence, the result holds. 2

2The program ΠC
AF can be replaced by a normal program. We will argue the issue in Section 6.1.

6

Example 3.1 Suppose AF = ({a, b, c}, {(a, b), (b, a), (b, c)}).

-
�

?

• •

•

a b

c

Then ΠC
AF consists of the rules:

in(a)← out(b), in(b)← out(a), in(c)← out(b),

out(a)← in(b), out(b)← in(a), out(c)← in(b),

← in(a), not out(b), ← in(b), not out(a), ← in(c), not out(b),

← out(a), not in(b), ← out(b), not in(a), ← out(c), not in(b),

in(x) ∨ out(x) ∨ und(x)←, ← in(x), out(x) where x ∈ {a, b, c}.

ΠC
AF has the three stable models:

{ in(a), out(b), in(c) }, { out(a), in(b), out(c) }, { und(a), und(b), und(c) }

which coincide with the three complete labellings of AF .

3.2 Stable Semantics
The following definition captures the transformation of AFs to LPs under the stable
semantics.

Definition 3.3 (AF program under the stable semantics) GivenAF = (Ar, att), an
AF-program under the stable semantics ΠS

AF is defined as follows.

ΠS
AF = ΓAF ∪ { in(x) ∨ out(x)← | x ∈ Ar } (8)

∪ {← in(x), out(x) | x ∈ Ar }. (9)

In contrast to ΠC
AF , the program ΠS

AF introduces disjunctive facts (8). This is
because every argument in a stable labelling is either in or out (but not both).

Theorem 3.2 Let AF = (Ar, att) be an argumentation framework and ΠS
AF an AF-

program under the stable semantics. Then the stable labellings of AF coincide with
the stable models of ΠS

AF .

Proof: A stable labelling is a complete labelling L such that und(L) = ∅. Then the
result follows by Theorem 3.1. 2

Corollary 3.3 AF = (Ar, att) has no stable labelling iff ΠS
AF is inconsistent.

Example 3.2 Suppose AF1 = ({a, b}, {(a, b), (b, a)}).

-
�• •

a b

7

Then ΠS
AF1

consists of rules:

in(a)← out(b), in(b)← out(a), out(a)← in(b),

out(b)← in(a), ← in(a), not out(b), ← in(b), not out(a),

← out(a), not in(b), ← out(b), not in(a),

in(a) ∨ out(a)←, in(b) ∨ out(b)←,
← in(a), out(a), ← in(b), out(b).

ΠS
AF1

has the two stable models { in(a), out(b) } and { out(a), in(b) } which coin-
cide with the two stable labellings of AF .

Next suppose AF2 = ({a, b, c}, {(a, b), (b, c), (c, a)}).

-
��

����H
H
HH

HY
• •

•

a b

c

Then ΠS
AF2

consists of rules:

in(a)← out(c), in(b)← out(a), in(c)← out(b),

out(a)← in(c), out(b)← in(a), out(c)← in(b),

← in(a), not out(c), ← in(b), not out(a), ← in(c), not out(b),

← out(a), not in(c), ← out(b), not in(a), ← out(c), not in(b),

in(a) ∨ out(a)←, in(b) ∨ out(b)←, in(c) ∨ out(c)←,
← in(a), out(a), ← in(b), out(b), ← in(c), out(c).

ΠS
AF2

is inconsistent (having no stable model) and AF2 has no stable labelling.

3.3 Grounded Semantics
The transformation of AFs to LPs under the grounded semantics is captured by the
following definition.

Definition 3.4 (AF program under the grounded semantics) GivenAF = (Ar, att),
an AF-program under the grounded semantics ΠG

AF is defined as follows.

ΠG
AF = ΓAF ∪ { und(x)← not in(x), not out(x) | x ∈ Ar }. (10)

Unlike ΠC
AF or ΠS

AF , ΠG
AF adds no disjunctive facts or constraints to ΓAF . Instead,

it includes a rule (10) which states that an argument x is labelled und if neither in(x)
nor out(x) is derived in ΓAF . The grounded semantics accepts/rejects only the argu-
ments that one cannot avoid to accept/reject, and abstains as much as possible [2]. The
situation is represented by ΠG

AF in which in(x) or out(x) holds only if it is derived in
ΓAF , otherwise, und(x) holds.

8

Theorem 3.4 Let AF = (Ar, att) be an argumentation framework and ΠG
AF an AF-

program under the grounded semantics. Then the grounded labelling of AF coincides
with the stable model of ΠG

AF .

Proof: Let M be the grounded labelling of AF . Since M is also a complete labelling
of AF , M is a stable model of ΠC

AF (Theorem 3.1) thereby satisfies every rule in ΓAF .
Then (ΓAF)M (the reduct of ΓAF with respect to M) is a Horn program and M \
{ und(x) | x ∈ Ar} is the unique stable model of ΓAF . Since und(x) ∈M iff in(x) 6∈
M and out(x) 6∈ M for any x ∈ Ar, M becomes the unique stable model of ΠG

AF .
Conversely, let M be a stable model of ΠG

AF . M satisfies the disjunctive facts (6) by
the rule (10). Suppose thatM does not satisfies the constraints (7), and in(a) ∈M and
out(a) ∈M for some a ∈ Ar. ThenM ′ = M \{ und(x) | x ∈ Ar} is the least model
of (ΓAF)M , and satisfies two rules r1 = ‘in(a) ← out(b1), . . . , out(bk)’ where
a− = {b1, . . . , bk} and r2 = ‘out(a) ← in(bj)’ where (bj , a) ∈ att. in(a) ∈ M ′
implies out(bi) ∈ M ′ (1 ≤ i ≤ k) for every (bi, a) ∈ att, and out(a) ∈ M ′ implies
in(bj) ∈ M ′ for some (bj , a) ∈ att (1 ≤ j ≤ k). Then there is bj such that in(bj) ∈
M ′ and out(bj) ∈ M ′. In this case, however, M ′ \ {in(bj), out(bj), in(a), out(a)}
also satisfies r1 and r2, so M ′ is not the least model of (ΓAF)M . Contradiction. Thus,
M satisfies the constraints (7), andM is a stable model of ΠC

AF . ThenM is a complete
labelling L of AF (Theorem 3.1). To see that M is the grounded labelling of AF , we
show that M is minimal with respect to in-labelling among all complete labellings of
AF . Since M is a stable model of ΠG

AF , M ′ = M \ { und(x) | x ∈ Ar} satisfies the
constraints (4) and (5) of ΓAF and is the least model of the program (ΓAF)M . Suppose
that M is not the grounded labelling of AF and there is the grounded labelling N of
AF such that in(N) ⊂ in(M) where in(M) = {in(x) | in(x) ∈ M}. Since N is
also a complete labelling of AF , N is a stable model of ΠC

AF and satisfies every rule
in ΓAF . Then N ′ = N \ { und(x) | x ∈ Ar} also satisfies the constraints (4) and (5)
of ΓAF and is the least model of the program (ΓAF)N . By out(N) ⊆ out(M) where
out(M) = {out(x) | out(x) ∈ M}, it holds that (ΓAF)M ⊆ (ΓAF)N . Since N ′

is also the least model of (ΓAF)M , (ΓAF)M has two different least models M ′ and
N ′. Contradiction. Hence, M is minimal with respect to in-labelling, and M is the
grounded labelling of AF . 2

Corollary 3.5 ΠG
AF always has a single stable model.

Example 3.3 Suppose AF = ({a, b, c, d}, {(a, b), (b, a), (b, c), (d, c)}).

-� -

�
���

• • •

•

a b c

d

Then ΠG
AF consists of rules:

9

in(a)← out(b), in(b)← out(a), in(c)← out(b), out(d), in(d)←,
out(a)← in(b), out(b)← in(a), out(c)← in(b),

out(c)← in(d), ← in(a), not out(b), ← in(b), not out(a),

← in(c), not out(b), ← in(c), not out(d), ← out(a), not in(b),

← out(b), not in(a), ← out(c), not in(b), not in(d), ← out(d),

und(x)← not in(x), not out(x) where x ∈ {a, b, c, d}.

ΠG
AF has the unique stable model { und(a), und(b), out(c), in(d) } which coincides

with the grounded labelling of AF .

3.4 Preferred Semantics
To transform AFs to LPs under the preferred semantics, we need to extend the Herbrand
base as follows. Given an argumentation framework AF = (Ar, att), let

BP
Ar = { in(x), out(x), IN(x), OUT(x), UND(x) | x ∈ Ar }.

To transform AFs to LPs under the preferred semantics, we construct a logic program
over BP

Ar.

Definition 3.5 (AF program under the preferred semantics) GivenAF = (Ar, att),
an AF-program under the preferred semantics ΠP

AF is defined as follows.

ΠP
AF = ΓAF ∪ { in(x) ∨ out(x)← | x ∈ Ar }

∪ { IN(x)← in(x), not out(x) | x ∈ Ar } (11)
∪ { OUT(x)← not in(x), out(x) | x ∈ Ar } (12)
∪ { UND(x)← in(x), out(x) | x ∈ Ar }. (13)

In contrast to ΠS
AF , constraints ← in(x), out(x) are not included in ΠP

AF . The
rule (11) (called IN-rule) means that an argument x has an IN-labelling under the pre-
ferred semantics if it is labelled in under the stable labelling; while the rule (12) (called
OUT-rule) means that an argument x has an OUT-labelling under the preferred seman-
tics if it is labelled out under the stable labelling. On the other hand, the rule (13)
(called UND-rule) means that an argument x has an UND-labelling under the preferred
semantics if it does not have a consistent stable labelling. This would happen when se-
lecting in(x) (resp. out(x)) in a disjunctive fact leads to derive out(x) (resp. in(x))
in ΓAF . In this case, UND(x) is produced by (13). ΠP

AF introduces these IN-OUT-
UND rules to ΠS

AF instead of constraints (9) of Definition 3.3. Given AF = (Ar, att)
and a set of labelled arguments S ⊆ BAr, we define the set MS ⊆ BP

Ar as MS =
(S \ {und(x) | x ∈ Ar}) ∪ {in(x), out(x) | und(x) ∈ S} ∪ { IN(x) | in(x) ∈
S } ∪ { OUT(x) | out(x) ∈ S } ∪ { UND(x) | und(x) ∈ S }. We show that there
is a one-to-one correspondence between the preferred labellings of AF and the stable
models of ΠP

AF .

10

Theorem 3.6 Let AF = (Ar, att) be an argumentation framework and ΠP
AF an AF-

program under the preferred semantics. Then S is a preferred labelling of AF iff MS

is a stable model of ΠP
AF .

Proof: Suppose that S is a preferred labelling of AF . Then S is either a stable la-
belling or not. (i) If S is a stable labelling of AF , then S is a stable model of ΠS

AF

(Theorem 3.2). Since S does not simultaneously contain both in(x) and out(x) for
any x ∈ Ar, by replacing the constraint← in(x), out(x) of ΠS

AF with rules (11)–(13)
in ΠP

AF , MS becomes a stable model of ΠP
AF . (ii) Else if S is not a stable labelling of

AF , S is a complete labelling such that und(x) ∈ S for some x ∈ Ar. Since S is a
stable model of ΠC

AF (Theorem 3.1), by replacing atoms und(x) in S with in(x) and
out(x) in MS , MS becomes a stable model of ΠP

AF .
Conversely, suppose that MS is a stable model of ΠP

AF . If UND(x) 6∈ MS for any
x ∈ Ar, then und(x) 6∈ S and in(x) ∈ S implies out(x) 6∈ S for any x ∈ Ar. So S
satisfies the constraints (9), and S becomes a stable model of ΠS

AF . By Theorem 3.2, S
is a stable labelling of AF thereby a preferred labelling of AF . Else if UND(x) ∈ MS

for some x ∈ Ar, S satisfies the disjunctive facts (6). Suppose that S does not satisfy
the constraints (7). In this case, in(a) ∈ S and out(a) ∈ S for some a ∈ Ar. Then
IN(a) ∈ MS and OUT(a) ∈ MS by the construction of MS . Since MS is a stable
model of ΠP

AF , IN(a) ∈ MS only if in(a) ∈ S and out(a) 6∈ S. Contradiction. Then
S satisfies the constraints (7). Hence, S becomes a stable model of ΠC

AF thereby a
complete labelling of AF (Theorem 3.1). To see that S is a preferred labelling of AF ,
we show that S is maximal with respect to in-labelling among all complete labellings
of AF . Suppose that S is not a preferred labelling of AF and there is a preferred
labelling S′ of AF that is obtained from S by replacing und(a) in S with in(a) in S′

for some a ∈ Ar. Then MS′ = (MS \{out(a), UND(a)})∪{IN(a)} becomes a stable
model of ΠP

AF by the first half of this proof. Then MS′ \ {IN(a)} is a stable model
of ΠP−

AF = ΠP
AF \ {IN(a) ← in(a), not out(a)}. Since IN(a) 6∈ MS , MS is also

a stable model of ΠP−
AF . By (MS′ \ {IN(a)}) ⊂ MS , however, MS is not a minimal

model hence it cannot be a stable model of ΠP−
AF . Hence, there is no such S′ and S is

maximal with respect to in-labelling among all complete labellings of AF . 2

Corollary 3.7 AF = (Ar, att) has a stable labelling iff ΠP
AF has a stable model M

such that UND(x) 6∈M for any x ∈ Ar.

Example 3.4 Suppose AF = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}).

-
�

6

-����
• •

•

a b

c

Then ΠP
AF consists of rules:

11

in(a)← out(b), in(b)← out(a), in(c)← out(b), out(c),

out(a)← in(b), out(b)← in(a), out(c)← in(b), out(c)← in(c),

← in(a), not out(b), ← in(b), not out(a), ← in(c), not out(b), ← in(c), not out(c),

← out(a), not in(b), ← out(b), not in(a), ← out(c), not in(b), not in(c),

in(a) ∨ out(a)←, in(b) ∨ out(b)←, in(c) ∨ out(c)←,
IN(x)← in(x), not out(x) where x ∈ {a, b, c},
OUT(x)← not in(x), out(x) where x ∈ {a, b, c},
UND(x)← in(x), out(x) where x ∈ {a, b, c}.

ΠP
AF has the two stable models:

{ out(a), in(b), out(c), OUT(a), IN(b), OUT(c) },
{ in(a), out(b), in(c), out(c), IN(a), OUT(b), UND(c) }.

Then { out(a), in(b), out(c) } and { in(a), out(b), und(c) } are the two preferred
labellings of AF (of which the first one is also the stable labelling).

4 Applications
In the preceding section, we presented ASP encodings of AFs. Using these encodings,
various types of argumentation-based reasoning problems can be solved using existing
ASP solvers. In this section, we provide some examples of such problems, and we show
how our encodings can be applied to address them. While we limit ourselves in this
section to the complete semantics, the methods that we present are directly applicable
to the stable, grounded or preferred semantics.

4.1 Query Answering
Different algorithms exist to answer the question of whether an argument x is accept-
able under a given semantics of an AF. Many algorithms are based on the notion of
a dispute tree, which is a tree whose root is labelled with the argument x, and whose
branches represent disputes, i.e., exchanges of arguments between an imaginary pro-
ponent and opponent [24]. Our encodings provide an alternative method to answer
this question. Under the complete semantics, the question of whether an argument is
acceptable under the complete semantics of an AF can be checked as follows.

Theorem 4.1 Let AF = (Ar, att) be an argumentation framework and ΠC
AF an AF-

program under the complete semantics. For any argument x ∈ Ar,

1. x is labelled in in some complete labelling of AF iff ΠC
AF ∪ {← not in(x) }

has a stable model.

2. x is labelled in in every complete labelling of AF iff ΠC
AF ∪ {← in(x) } has

no stable model.

12

The results also hold by replacing in with out or und.

Proof: 1. An argument x is labelled in in some complete labelling of AF iff ΠC
AF has

a stable model which contains in(x) (Theorem 3.1) iff ΠC
AF ∪ {← not in(x) } has a

stable model.
2. An argument x is labelled in in every complete labelling of AF iff every stable
model of ΠC

AF contains in(x) (Theorem 3.1) iff ΠC
AF ∪ {← in(x) } has no stable

model. 2

Theorem 4.1 uses a standard query-answering technique of ASP. This means that
we can use existing ASP solvers in [6] for checking credulous or skeptical entailment
of an argument in AFs.

Example 4.1 Consider theAF of Example 3.1. The program ΠC
AF ∪{← not in(a) }

has the single stable model { in(a), out(b), in(c) }. On the other hand, ΠC
AF ∪ {←

in(a) } has two stable models { out(a), in(b), out(c) } and { und(a), und(b), und(c) }.
By these facts, the argument a is labelled in in some (but not every) complete labelling
of AF .

4.2 Enforcement
The enforcement problem is the problem of determining whether an AF can be modified
so that a given set of arguments becomes a subset of an extension of the AF, for example
by adding new arguments that interact with existing ones [3, 23, 37]. To encode this
type of problem, we introduce the notion of the universal argumentation framework.

Definition 4.1 (universal argumentation framework [11, 30]) The universal argumen-
tation framework (UAF) is a pair (U, attU) in which U is the set of all arguments in the
language and attU ⊆ U ×U is the set of fixed attack relations over U . An argumenta-
tion framework AF = (Ar, att) is called a sub-AF of the UAF (written AF v UAF)
if Ar is a finite subset of U and att = attU ∩ (Ar ×Ar).

The universal argumentation framework serves as the universe of all possible ar-
guments. Agents are assumed to have access only to part of the world, therefore the
private argumentation framework AF of an agent is assumed to be a subgraph of the
UAF. For the set U of all arguments, the set of all labelled arguments is defined as

BU = { in(x), out(x), und(x) | x ∈ U }.

The enforcement problem is defined as follows.

Definition 4.2 (enforcement) LetAF = (Ar, att) be a sub-AF of UAF = (U, attU).
Given an enforcement set E ⊂ BU , if one can construct a new argumentation frame-
work AF ′ = (Ar′, att′) such that (i) Ar ⊆ Ar′ and AF ′ v UAF , and (ii) AF ′ has a
complete labelling S such that E ⊆ S, then AF satisfies the enforcement E under the
complete semantics.

13

Note that one cannot enforce different labellings for the same argument, then E
is given as a proper subset of BU . We introduce new arguments together with attack
relations involving the introduced arguments. On the other hand, we assume that attack
relations between two arguments are fixed in the UAF as far as there is no change in the
world. So we do not allow to introduce arbitrary attack relations that are not in attU
for satisfying an enforcement set. We introduce an AF program for the enforcement
problem.

Definition 4.3 (AF program for enforcement) Let AF = (Ar, att) be a sub-AF of
UAF = (U, attU), and εx and εx new propositions uniquely associated with each
x ∈ U . Then an AF-program for enforcement under the complete semantics εΠC

AF

consists of the following rules:

1. For every x ∈ U , let x−∩Ar = {y1, . . . , yk} and x−∩(U\Ar) = {yk+1, . . . , yn}
(0 ≤ k ≤ n).

in(x)← out(y1), . . . , out(yk), [out(yk+1)], . . . , [out(yn)], [εx] (14)
← out(x),not in(y1), . . . ,not in(yk), [not in(yk+1)], . . . , [not in(yn)], [εx](15)

where

• [out(yj)] (k + 1 ≤ j ≤ n) is either a conjunction “out(yj), εyj ” or a
proposition εyj

• [not in(yj)] (k + 1 ≤ j ≤ n) is either a conjunction “not in(yj), εyj
”

or a proposition εyj

• [εx] = true if x ∈ Ar; otherwise, [εx] = εx.

2. For every (y, x) ∈ attU ,

out(x)← in(y), [εx], [εy] (16)
← in(x),not out(y), [εx], [εy] (17)

3. For every x ∈ U ,

in(x) ∨ out(x) ∨ und(x)← [εx] (18)
← in(x), out(x) (19)

4. For every x ∈ U \Ar,

εx ∨ εx ←, ← εx, εx (20)

The rules (14) and (15) are modifications of rules (2) and (5) of ΓAF . For x ∈ Ar
and yi ∈ Ar (1 ≤ i ≤ k), (14) and (15) specify the same conditions as (2) and (5),
respectively. For any argument yj ∈ U \ Ar (k + 1 ≤ j ≤ n), [out(yj)] is either
a conjunction of atoms “out(yj), εyj

” or a proposition εyj
. If εyj

is selected by the
disjunctive fact (20), then out(yj) becomes “active” in the body of the rule (14). Else

14

if εyj is selected by (20), then out(yj) is “inactive” in the body of the rule (14). The
whole rule (14) is active if x ∈ Ar ([εx] = true); otherwise, it becomes active if εx
is selected by (20). The rule (15) has a similar condition. The rules (16) and (17) are
similar modification of rules (3) and (4) of ΓAF . The rules (18) and (19) correspond to
rules (6) and (7) of ΠC

AF . In particular, (19) does not have the condition [εx] because
the constraints always hold for any x. Intuitively, enforcement may introduce new
arguments in U \ Ar. If an argument x ∈ U \ Ar is introduced to Ar, then it is
represented by the selection of εx in (20). For those arguments newly introduced to
Ar, the corresponding rules become active in εΠC

AF . For any argument x ∈ U \ Ar
that is not introduced toAr, an atom εx is selected in (20). If εx is selected, then neither
in(x), out(x) nor und(x) is obtained by the rule (18) for such x. The program εΠC

AF

depends on the UAF, but we assume the existence of a fixed UAF and do not explicitly
write it as a parameter in εΠC

AF .
Using the program, the enforcement problem is computed in ASP as follows.

Theorem 4.2 Let AF = (Ar, att) be an argumentation framework and εΠC
AF the

program defined as above. Given an enforcement set E ⊂ BU , AF satisfies the en-
forcement E under the complete semantics iff the program εΠC

AF ∪ {← not `(x) |
`(x) ∈ E where ` ∈ {in, out, und} } has a stable model.

Proof: AF satisfies the enforcement E under the complete semantics iff AF is ex-
tended toAF ′ in a way thatAF ′ has a complete labelling S such that E ⊆ S. Suppose
that AF ′ = (Ar′, att′) where Ar ⊆ Ar′ ⊆ U and att′ = attU ∩ (Ar′ ×Ar′). In (20)
of εΠC

AF , select εx for any x ∈ Ar′ \ Ar, and select εx for any x ∈ U \ Ar′. In this
case, rules (14) and (15) for x ∈ Ar′ are simplified to

in(x)← out(y1), . . . , out(yk), out(yk+1), . . . , out(ym)

← out(x),not in(y1), . . . ,not in(yk),not in(yk+1), . . . ,not in(ym)

for some m (k + 1 ≤ m ≤ n) by unfolding (14) and (15) with atoms εx, εyj and
εyj selected in (20). Similar simplification is done for rules (16) and (17). Then the
program εΠC

AF contains the rules of ΠC
AF ′ . On the other hand, εx is not true for x ∈ U \

Ar′ in εΠC
AF . So none of in(x), out(x) and und(x) is derived by (18) for x ∈ U \Ar′,

and none of those atoms are included in a stable model of εΠC
AF . Then a program

εΠC
AF has a stable model M such that M = N ∪ { εx | x ∈ Ar′ \ Ar } ∪ { εx | x ∈

U \ Ar′ } for some stable model N of ΠC
AF ′ . Thus, AF ′ has a complete labelling S

such that E ⊆ S iff εΠC
AF has a stable model M such that E ⊆ M by Theorem 3.1.

Hence the result holds by Theorem 4.1. 2

Example 4.2 Let UAF = ({a, b, c}, {(b, a), (c, b), (c, c)}) and AF = ({a}, ∅).

� � �����
• • •
a b c

Then AF has the complete labelling { in(a) }. The program εΠC
AF consists of rules:

15

in(a)← out(b), εb, in(a)← εb, in(b)← out(c), εc, εb,

in(b)← εc, εb, in(c)← out(c), εc, in(c)← εc, εc,

out(a)← in(b), εb, out(b)← in(c), εb, εc, out(c)← in(c), εc,

← in(a), not out(b), εb, ← in(b), not out(c), εb, εc, ← in(c), not out(c), εc,

← out(a), not in(b), εb, ← out(a), εb, ← out(b), not in(c), εc, εb,

← out(b), εc, εb, ← out(c), not in(c), εc, ← out(c), εc, εc,

in(a) ∨ out(a) ∨ und(a)←, in(b) ∨ out(b) ∨ und(b)← εb, in(c) ∨ out(c) ∨ und(c)← εc,

← in(a), out(a), ← in(b), out(b), ← in(c), out(c),

εb ∨ εb ←, εc ∨ εc ←, ← εb, εb, ← εc, εc.

Given the enforcement set E = {out(a)}, the program εΠC
AF ∪ {← not out(a) }

has the stable model { out(a), in(b), εb, εc }. Then AF satisfies the enforcement E.
That is, to enforce out(a), AF is modified by introducing the new argument b and the
attack relation (b, a). On the other hand, let AF ′ = ({a, b}, {(b, a)}) which has the
complete labelling {out(a), in(b)}. The program εΠC

AF ′ is obtained from εΠC
AF by

(i) removing rules “in(a)← εb ” and “← out(a), εb ”, (ii) removing “εb ∨ εb ←” and
“← εb, εb ”, and (iii) removing the proposition εb from the remaining rules. Given the
enforcement set E′ = {in(a)}, the program εΠC

AF ′ ∪ {← not in(a) } has no stable
model. In this case,AF ′ does not satisfy the enforcementE′ because there is no way to
make in(a) true by introducing a new argument to AF ′. In fact, introducing c to AF ′

makes it identical to UAF that has the complete labelling { und(a), und(b), und(c) }.

4.3 Agreement
Argumentation frameworks are used in negotiation [1] and debate [30]. In negotiation
and debate, two agents having different opinions exchange their arguments to reach
an agreement. In this section, we represent two agents as different AFs and formulate
agreement between them.

Definition 4.4 (agreement) Let AF1 = (Ar1, att1) and AF2 = (Ar2, att2) be two
sub-AFs of UAF = (U, attU). If AF1 has a complete labelling S and AF2 has a
complete labelling T such that S ∩ T 6= ∅, then AF1 and AF2 can reach an agreement
under the complete semantics. In this case, we say that AF1 and AF2 agree on S ∩ T .

By definition, two AFs can reach an agreement if they have complete labellings that
agree on labellings of some arguments.

Example 4.3 Suppose AF1 = ({a, b, c}, {(a, b), (b, a), (b, c)}), AF2 = ({a, b, d},
{(a, b), (b, a), (d, a)}) and UAF = ({a, b, c, d}, {(a, b), (b, a), (b, c), (d, a)}).

-
�

?

6
• •

••

a b

cd

16

ThenAF1 has the three complete labellings: { in(a), out(b), in(c) }, { out(a), in(b), out(c) },
{ und(a), und(b), und(c) }; whileAF2 has the single complete labelling: { out(a), in(b),
in(d) }. Then AF1 and AF2 agree on { out(a), in(b) }.

In negotiation or debate, agents are interested in whether they can agree on some
particular arguments. Let γΠC

AF be a program in which predicates in, out and und in
ΠC

AF are renamed by in′, out′ and und′, respectively. Define

Φ = { agree(x)← in(x), in′(x) | x ∈ U } ∪ { agree(x)← out(x), out′(x) | x ∈ U }
∪ { agree(x)← und(x), und′(x) | x ∈ U } ∪ { ok← agree(x) | x ∈ U } ∪ {← not ok }

where ok and agree(x) are new atoms. Then we have the next result.

Theorem 4.3 Let AF1 and AF2 be two sub-AFs of the UAF, and ΠC
AF1

and ΠC
AF2

their AF-programs under the complete semantics, respectively. ThenAF1 andAF2 can
reach an agreement under the complete semantics iff the program ΠC

AF1
∪ γΠC

AF2
∪ Φ

has a stable model S. In this case, AF1 and AF2 agree on each argument x satisfying
agree(x) ∈ S.

Proof: AF1 and AF2 can reach an agreement under the complete semantics iff ΠC
AF1

has a stable modelM and ΠC
AF2

has a stable modelN such thatM ∩N 6= ∅ (∗). ΠC
AF1

has a stable model M and ΠC
AF2

has a stable model N iff ΠC
AF1
∪ γΠC

AF2
has a stable

model M ∪ N ′ where N ′ = { `′(x) | `(x) ∈ N and ` ∈ {in, out, und} }. Then
(∗) holds iff ΠC

AF1
∪ γΠC

AF2
has a stable model T such that ∅ ⊂ {`(x), `′(x)} ⊆ T

for some x ∈ U . In this case, ΠC
AF1
∪ γΠC

AF2
∪ Φ has a stable model S in which

agree(x) ∈ S for any x ∈ U such that `(x) ∈M iff `(x) ∈ N . 2

Theorem 4.3 can be extended to agreement among more than two agents.

4.4 Equivalence
Two argumentation frameworks are equivalent if they have the same extensions (or
labellings) under the designated semantics. Whether two argumentation frameworks
are equivalent or not depends on the choice of semantics.

Example 4.4 ConsiderAF1 = ({a, b}, {(a, a), (a, b), (b, a)}) andAF2 = ({a, b}, {(a, a), (b, a)}).

-
�
K����• •
a bAF1

�
K����• •
a bAF2

AF1 has the two complete labellings: {out(a), in(b)} and {und(a), und(b)}, of
which {out(a), in(b)} is the stable labelling and {und(a), und(b)} is the grounded
labelling. On the other hand, AF2 has the single complete labelling: {out(a), in(b)},
which is also the stable labelling and the grounded labelling. Thus, AF1 and AF2

are equivalent under the stable semantics, while they are different under the complete
semantics and the grounded semantics.

17

Equivalence of two AFs is known by checking the equivalence of their AF-programs.
In the above example, ΓAF1 and ΓAF2 become

ΓAF1 : in(a)← out(a), out(b), in(b)← out(a),

out(a)← in(a), out(a)← in(b), out(b)← in(a),

← in(a), not out(a), ← in(a), not out(b), ← in(b), not out(a),

← out(a), not in(a), not in(b), ← out(b), not in(a).

ΓAF2 : in(a)← out(a), out(b), in(b)←,
out(a)← in(a), out(a)← in(b),

← in(a), not out(a), ← in(a), not out(b),

← out(a), not in(a), not in(b), ← out(b).

The AF-program under the complete semantics ΠC
AF1

= ΓAF1
∪ { in(x) ∨ out(x) ∨

und(x) ←| x ∈ {a, b}} ∪ {← in(x), out(x) | x ∈ {a, b}} has two stable mod-
els {out(a), in(b)} and {und(a), und(b)}, while the AF-program under the complete
semantics ΠC

AF2
has the single stable model {out(a), in(b)}. The AF-program un-

der the stable semantics ΠS
AF1

= ΓAF1
∪ {in(x) ∨ out(x) ←| x ∈ {a, b}} ∪ {←

in(x), out(x) | x ∈ {a, b}} has the single stable model {out(a), in(b)} and the AF-
program under the stable semantics ΠS

AF2
has the same stable model. The AF-program

under the grounded semantics ΠG
AF1

= ΓAF1
∪ {und(x) ← not in(x), not out(x) |

x ∈ {a, b}} has the single stable model {und(a), und(b)}, while the AF-program un-
der the grounded semantics ΠG

AF2
has the stable model {out(a), in(b)}.

Since ΠS
AF1

and ΠS
AF2

have the same stable model, the corresponding argumen-
tation frameworks AF1 and AF2 are equivalent under the stable semantics. We write
Π1 ≡ Π2 if Π1 and Π2 have the same stable models.

Theorem 4.4 Two argumentation frameworks AF1 and AF2 are equivalent under
the complete (resp. stable, grounded, preferred) semantics iff ΠC

AF1
≡ ΠC

AF2
(resp.

ΠS
AF1
≡ ΠS

AF2
, ΠG

AF1
≡ ΠG

AF2
, ΠP

AF1
≡ ΠP

AF2
).

Proof: The results follow from Theorems 3.1, 3.2, 3.4 and 3.6. 2

Strong equivalence is also used for comparing different AFs [27]. Two argumen-
tation frameworks AF1 = (Ar1, att1) and AF2 = (Ar2, att2) are strongly equivalent
(under some semantics L) if AF1 t AF = (Ar1 ∪ Ar, att1 ∪ att) and AF2 t AF =
(Ar2 ∪ Ar, att2 ∪ att) are equivalent (under L) for any sub-AF AF = (Ar, att) of
UAF . The problem is translated into ASP such that AF1 and AF2 are strongly equiv-
alent iff ΠX

AF1tAF ≡ ΠX
AF2tAF holds for any AF v UAF where X is either C,

S, G or P . In this way, equivalence issues in AFs are translated into those in ASP.
Testing equivalence of two AFs is done by first translating them into corresponding
AF-programs, then using existing techniques of testing equivalence of logic programs
[26].

18

4.5 Encoding ABA
Assumption-based argumentation (ABA) [5, 15] is a form of argumentation and its
relationship to abstract argumentation frameworks has been studied in the literature
[9, 14, 32]. In this section, we provide a method of representing ABA in answer set
programming.

Definition 4.5 (argument [15]) Given a deductive system (L,R) where L is a logical
language and R is a set of inference rules in this language, and a set of assumptions
A ⊆ L, an argument for a conclusion c ∈ L supported by S ⊆ A is a finite tree with
nodes labelled by formulas in L or by the special symbol > such that:

• the root is labelled by c

• for every node N

– if N is a leaf then N is labelled either by an assumption or by >;

– if N is not a leaf and b ∈ L is the label of N , then there exists an inference
rule b ← b1, . . . , bm (m ≥ 0) and either m = 0 and the child of N is
labelled by >, or m > 0 and N has m children, labelled by b1, . . . , bm
(bi ∈ L for i = 1, . . . ,m) respectively.

• S is the set of all assumptions labelling the leaves.

An argument for c supported by S is written as S ` c or A : S ` c where A is the
name used for referring the argument.

Definition 4.6 (ABA framework [15]) An ABA framework is a tuple (L,R,A, ¯) where

• (L,R) is a deductive system.

• A ⊆ L is a (non-empty) set of assumptions.

• ¯ is a total mapping from A into L, where ᾱ is the contrary of α.

• A set of assumptions S ⊆ A attacks α ∈ A if there exists an argument T ` ᾱ
such that T ⊆ S.

An ABA framework is flat if assumptions only occur on the right of the arrow in infer-
ence rules ofR.

In this section, we consider only flat ABA frameworks and an ABA means a flat
ABA hereafter. Let LA : A → {IN ,OUT ,UND} be a total function (called assump-
tion labelling). Define IN (LA) = {α ∈ A | LA(α) = IN }, OUT (LA) = {α ∈
A | LA(α) = OUT } and UND(LA) = {α ∈ A | LA(α) = UND }.

Schulz and Toni [32] introduce a complete labelling semantics for ABA as follows.

Definition 4.7 (complete assumption labelling [32]) An assumption labelling LA is
a complete assumption labelling iff for each assumption α ∈ A it holds that:

19

• if LA(α) = IN then each set of assumptions attacking α contains some β such
that LA(β) = OUT .

• if LA(α) = OUT then there exists a set of assumptions S attacking α such that
S ⊆ IN (LA).

• if LA(α) = UND then each set of assumptions attacking α contains some β
such that LA(β) 6= IN and there is a set of assumptions S attacking α such that
S ∩ OUT (LA) = ∅.

An ABA framework (L,R,A, ¯) can be mapped onto an associated (abstract) ar-
gumentation framework (ArABA, attABA) [14] where

• ArABA is the set of all constructible arguments S ` c in (L,R,A, ¯);

• (S1 ` c1, S2 ` c2) ∈ attABA iff c1 is the contrary of some α ∈ S2.

In what follows, labellingL of arguments in an (abstract) argumentation framework
is also called argument labelling in order to distinguish it from assumption labelling.
Schulz and Toni [32] show that there is a one-to-one correspondence between complete
assumption labellings of an ABA framework and complete argument labellings of its
associated argumentation framework.

Proposition 4.5 ([32]) LetLA be an assumption labelling of an ABA framework (L,R,A, ¯).
Then LA is a complete assumption labelling of (L,R,A, ¯) iff the argument labelling
L with

• in(L) = { (S ` c) ∈ ArABA | S ⊆ IN (LA) },

• out(L) = { (S ` c) ∈ ArABA | ∃α ∈ S such that α ∈ OUT (LA)},

• und(L) = { (S ` c) ∈ ArABA | ∃α ∈ S such that α ∈ UND(LA) and S ∩
OUT (LA) = ∅ }

is a complete argument labelling of (ArABA, attABA).

Example 4.5 ([32]) Consider the ABA framework (L,R,A, ¯) where L = {a, b, c, α, β, γ},
R = { a ← α, a ← β, c ← β, b ← γ }, A = {α, β, γ}, ᾱ = a, β̄ = b and γ̄ = c.
The ABA has the three complete assumption labellings:

IN (LA1) = ∅, OUT (LA1) = ∅, UND(LA1) = {α, β, γ},
IN (LA2) = {γ}, OUT (LA2) = {β}, UND(LA2) = {α},
IN (LA3) = {β}, OUT (LA3) = {α, γ}, UND(LA3) = ∅.

The ABA framework (L,R,A, ¯) is transformed to the argumentation framework
(ArABA, attABA) such that

ArABA = {A1 : {α} ` α, A2 : {β} ` β, A3 : {γ} ` γ, A4 : {α} ` a, A5 : {β} ` a,
A6 : {β} ` c, A7 : {γ} ` b },

attABA = {(A4, A1), (A4, A4), (A5, A1), (A5, A4), (A6, A3), (A6, A7), (A7, A2), (A7, A5), (A7, A6)}.

20

(ArABA, attABA) has the three complete argument labellings which correspond to the
three complete assumption labellings.

in(L1) = ∅, out(L1) = ∅, und(L1) = {A1, A2, A3, A4, A5, A6, A7},
in(L2) = {A3, A7}, out(L2) = {A2, A5, A6}, und(L2) = {A1, A4},
in(L3) = {A2, A5, A6}, out(L3) = {A1, A3, A4, A7}, und(L3) = ∅.

An ABA framework is represented in a logic program by combining the transfor-
mation from ABA to AFs and the transformation from AFs to LPs (under the complete
semantics).

Definition 4.8 (transforming ABA to LP) Let (L,R,A, ¯) be an ABA framework
and AFABA = (ArABA, attABA) its associated AF. Then ΠC

AFABA
is called an ABA-

program under the complete semantics.

Theorem 4.6 Let (L,R,A, ¯) be an ABA framework and ΠC
AFABA

its associated ABA-
program under the complete semantics. Then LA is a complete assumption labelling
of (L,R,A, ¯) iff M is a stable model of ΠC

AFABA
such that

• in(A) ∈M iff (A : S ` c) ∈ ArABA and S ⊆ IN (LA),

• out(A) ∈ M iff (A : S ` c) ∈ ArABA and ∃α ∈ S such that α ∈
OUT (LA),

• und(A) ∈ M iff (A : S ` c) ∈ ArABA and ∃α ∈ S such that α ∈
UND(LA) and S ∩OUT (LA) = ∅.

Proof: The result holds by Proposition 4.5 and Theorem 3.1. 2

Example 4.6 The ABA framework of Example 4.5 is transformed to ΠC
AFABA

such that

in(A1)← out(A4), out(A5), in(A2)← out(A7), in(A3)← out(A6),

in(A4)← out(A4), out(A5), in(A5)← out(A7), in(A6)← out(A7),

in(A7)← out(A6), out(A1)← in(A4), out(A1)← in(A5), out(A2)← in(A7),

out(A3)← in(A6), out(A4)← in(A4), out(A4)← in(A5), out(A5)← in(A7),

out(A6)← in(A7), out(A7)← in(A6),

← in(A1),not out(A4), ← in(A1),not out(A5), ← in(A2),not out(A7),

← in(A3),not out(A6), ← in(A4),not out(A4), ← in(A4),not out(A5),

← in(A5),not out(A7), ← in(A6),not out(A7), ← in(A7), not out(A6),

← out(A1),not in(A4),not in(A5), ← out(A2),not in(A7), ← out(A3),not in(A6),

← out(A4),not in(A4),not in(A5), ← out(A5),not in(A7), ← out(A6),not in(A7),

← out(A7), not in(A6),

in(Ai) ∨ out(Ai) ∨ und(Ai)←, ← in(Ai), out(Ai) for i = 1, . . . , 7

21

ΠC
AFABA

has the three stable models

{ und(A1), und(A2), und(A3), und(A4), und(A5), und(A6), und(A7) },
{ in(A3), in(A7), out(A2), out(A5), out(A6), und(A1), und(A4) },
{ in(A2), in(A5), in(A6), out(A1), out(A3), out(A4), out(A7) },

which correspond to the three complete assumption labellings of the ABA framework.

Assumption labellings are also defined under the grounded, stable or preferred se-
mantics of ABA [10]. Schulz [33] reports connections between assumption labellings
and argument labellings under the grounded, stable or preferred semantics of ABA.
Using the results, the transformation from ABA to LPs in this section is applied to the
grounded, stable or preferred semantics of ABA as well.

5 Comparison with ASP-based Argumentation Systems
There are several studies that are concerned with encoding argumentation frameworks
into ASP. Egly et al. [19] represent extension-based semantics of AFs (complete, sta-
ble, grounded, preferred) by ASP, which is later modified and extended by Gaggl et al.
[20] to the preferred, semi-stable and stage semantics of AFs. Wakaki et al. [36] rep-
resent labelling-based semantics of AFs (complete, stable, grounded, preferred and
semi-stable) by ASP. In this section, we compare our encodings of the complete, sta-
ble, grounded, and preferred semantics of AFs with those presented in [19, 20, 36].

Given AF = (Ar, att), define FAF = { arg(x) | x ∈ Ar } ∪ { att(x, y) |
(x, y) ∈ att }.

5.1 Egly, Gaggl and Woltran
Egly et al. [19] compute complete extensions of AF = (Ar, att) by answer sets of the
program:

πC
E = FAF ∪ πadm ∪ {← out(x),not undefended(x) }

where

πadm = { in(x)← arg(x),not out(x), out(x)← arg(x),not in(x),

← in(x), in(y), att(x, y), defeated(x)← in(y), att(y, x),

undefended(x)← att(y, x),not defeated(y), ← in(x), undefended(x) }.

They compute stable extensions of AF = (Ar, att) by answer sets of the program:

πS
E = FAF ∪ { in(x)← arg(x),not out(x), out(x)← arg(x),not in(x),

← in(x), in(y), att(x, y), defeated(x)← in(y), att(y, x),

← out(x),not defeated(x) }.

22

Next, the grounded extension of AF = (Ar, att) is computed by the answer set of
the program:

πG
E = FAF ∪ π< ∪ πdef ∪ { in(x)← defended(x) }

where π< is defined as:

π< = { lt(x, y)← arg(x), arg(y), x < y,

nsucc(x, z)← lt(x, y), lt(y, z), succ(x, y)← lt(x, y),not nsucc(x, y),

ninf (y)← lt(x, y), inf (x)← arg(x), notninf (x),

nsup(x)← lt(x, y), sup(x)← arg(x), notnsup(x) }

where < is a total order defined over the arguments in Ar. πdef is defined as:

πdef = { defended upto(x, y)← inf (y), arg(x),not att(y, x),

defended upto(x, y)← inf (y), in(z), att(z, y), att(y, x),

defended upto(x, y)← succ(z, y), defended upto(x, z),not att(y, x),

defended upto(x, y)← succ(z, y), defended upto(x, z), in(v), att(v, y), att(y, x),

defended(x)← sup(y), defended upto(x, y) }.

Finally, preferred extensions of AF = (Ar, att) are computed by answer sets of
the program:

πP
E = FAF ∪ πadm ∪ π< ∪ πp

where

πp = { eq upto(x)← inf (x), in(x), inN(x),

eq upto(x)← inf (x), out(x), outN(x),

eq upto(x)← succ(y, x), in(x), inN(x), eq upto(y),

eq upto(x)← succ(y, x), out(x), outN(x), eq upto(y),

eq ← sup(x), eq upto(x),

undefeated upto(x, y)← inf (y), outN(x), outN(y),

undefeated upto(x, y)← inf (y), outN(x),not att(y, x),

undefeated upto(x, y)← succ(z, y), undefeated upto(x, z), outN(y),

undefeated upto(x, y)← succ(z, y), undefeated upto(x, z),not att(y, x),

undefeated(x)← sup(y), undefeated upto(x, y),

inN(x) ∨ outN(x)← out(x), inN(x)← in(x),

spoil← eq, spoil← inN(x), inN(y), att(x, y),

spoil← inN(x), outN(y), att(y, x), undefeated(y),

inN(x)← spoil, arg(x), outN(x)← spoil, arg(x), ← not spoil }.

The encoding for preferred extensions is later simplified by Gaggl et al. [20]. They
compute preferred extensions of AF = (Ar, att) by answer sets of the program:

πP
G = FAF ∪ πadm ∪ πg

23

where

πg = {nontrivial ← out(x),

witness(x) : out(x)← nontrivial ,

spoil ∨ witness(z) : att(z, y)← witness(x), att(y, x),

spoil ← witness(x),witness(y), att(x, y),

spoil ← in(x),witness(y), att(x, y),

witness(x)← spoil , arg(x), ← not spoil ,nontrivial }.

In the above, a conditional literal “p(x) : q(x)” represents a head of disjunctions of
atoms p(a) where q(a) is true.

5.2 Wakaki and Nitta
Wakaki et al. [36] compute complete labellings of AF = (Ar, att) by answer sets of
the program:

πC
W = FAF ∪ { in(x)← arg(x),notng(x), ng(x)← in(y), att(y, x),

ng(x)← undec(y), att(y, x), out(x)← in(y), att(y, x),

undec(x)← arg(x),not in(x),not out(x) }.

They compute stable labellings of AF = (Ar, att) by answer sets of the program:

πS
W = πC

W ∪ {← undec(x)}.

Next, the grounded labelling of AF = (Ar, att) is computed by the answer set of
the program:

πG
W = πC

W ∪ Γ ∪ ΞG.

To define Γ and ΞG, we need additional notions. Define I = { in(x) | x ∈ Ar},
U = {undec(x) | x ∈ Ar} and C = {Lt | Lt is the term expressing an atom L ∈
I ∪ U}. Let as(Π) be the set of answer sets of a program Π and ξ the cardinality of
as(Π), i.e., ξ = |as(Π)|. Define a bijective function ψ : as(Π) → {1, . . . , ξ}. Then
ψ(S) = j (1 ≤ j ≤ ξ) for each S ∈ as(Π). With this setting Γ is defined as:

Γ = {m1(Lt)← L | L ∈ I ∪ U and Lt ∈ C }
∪ {m2(Lt, j)←, cno(j)← | ψ(S) = j (1 ≤ j ≤ ξ) for S ∈ as(πC

W)

and Lt ∈ C for L ∈ S ∩ (I ∪ U) }
∪ { i(Lt)← | L ∈ I and Lt ∈ C }
∪ {u(Lt)← | L ∈ U and Lt ∈ C }.

ΞG is defined as:

ΞG = { c(y)← cno(y),m1(x), i(x),notm2(x, y),

d(y)← m2(x, y), i(x),notm1(x),

← c(x),not d(x) }.

24

Finally, preferred labellings of AF = (Ar, att) are computed by answer sets of the
program:

πP
W = πC

W ∪ Γ ∪ ΞP

where ΞP is defined as:

ΞP = { c(y)← cno(y),m1(x), i(x),notm2(x, y),

d(y)← m2(x, y), i(x),notm1(x),

← d(x),not c(x) }.

5.3 Comparison
Comparing our encodings with [19, 20, 36], we can observe the following facts.

• Our encoding produces a ground logic program that directly represents argu-
ments and attack relations in an individual AF. The program ΓAF reflects the
structure of an individual AF , while additional rules in each AF-program (dis-
junctive facts, constraints, etc) are independent of individual AFs. Every encod-
ing is done in polynomial time. On the other hand, encodings of [19, 20, 36]
produce a set FAF of ground facts that represents an individual AF, while rules
for computing AF semantics are given as meta-rules that are independent of in-
dividual AFs.

• For the complete and the stable semantics, our encodings are similar to those
of Wakaki et al., while our encodings introduce no auxiliary atoms, i.e. the re-
sulting stable models are identical to the sets of labelled arguments under the
complete, stable and grounded semantics. Transformations for the grounded and
the preferred semantics by Wakaki et al. require computation of answer sets of
πC
W , hence those encodings are not done in polynomial time. The encodings by

Egly et al. and Gaggl et al. also introduce auxiliary atoms.

• Our encoding is more compact than other encodings. This is particularly the
case in the grounded and the preferred semantics. For the preferred semantics,
the encodings of Egly et al. and Wakaki et al. “naively” maximize admissible
extensions. On the other hand, the encoding of Gaggl et al. and ours make im-
plicit use of the minimality inherent to the answer set semantics. The encoding
by Gaggl et al. uses conditional literals that are not used in our encodings.

• Query answering, agreement, equivalence testing and ABA encoding in Sec-
tion 4 would also be done using encodings by [19, 20, 36]. On the other hand, it
is not straightforward to realize enforcement in Section 4.2 by [19, 20, 36].

The fact that our encoding is more compact than existing ones does not necessarily
imply runtime efficiency, which is to be verified by empirical evaluation. On the other
hand, the fact that our encoding provides a simple representation of AFs in ASP is con-
sidered an advantage from the viewpoint of knowledge representation and declarative
problem solving.

25

6 Discussion

6.1 Reduction to Normal Programs
In Section 3 we introduce four different transformations from AFs to LPs. Of which,
ΠC

AF (AF program under the complete semantics), ΠS
AF (AF program under the stable

semantics), and ΠP
AF (AF program under the preferred semantics) are programs that

contain both disjunction and NAF-literals. By contrast, ΠG
AF (AF program under the

grounded semantics) is a normal program that contains NAF-literals but no disjunc-
tion. The program ΠC

AF is transformed to a semantically equivalent normal program
by replacing the disjunctive fact (6) and the constraint (7) with the following three rules
[4]:

in(x)← not out(x), not und(x),

out(x)← not in(x), not und(x),

und(x)← not in(x), not out(x).

Likewise, the program ΠS
AF is transformed to a semantically equivalent normal pro-

gram by replacing the disjunctive fact (8) and the constraint (9) with the following two
rules:

in(x)← not out(x),

out(x)← not in(x).

Thus, ΠC
AF , ΠS

AF and ΠG
AF can be represented by normal programs. In particular, ΠG

AF

is a class of stratified programs with constraints. This class of programs is tractable
[31] and thus matches the complexity of the grounded semantics [16, 17]. On the other
hand, the program ΠP

AF cannot be transformed to a semantically equivalent normal
program in polynomial time in general. This is because in ΠP

AF two atoms in(x) and
out(x) may hold at the same time, so the disjunctive fact (8) is not replaced by the
above mentioned normal rules. Generally, a disjunctive program can be transformed to
a semantically equivalent to normal program if it is head-cycle-free.3 ΠP

AF is not head-
cycle-free in general because two atoms in(c) and out(c) have a cycle through the
disjunctive fact in(c) ∨ out(c) ← in Example 3.4. Thus, ΠP

AF is in the class of logic
programs which are more expressive and computationally expensive than others unless
the polynomial hierarchy collapses. This is consistent with the complexity results of
argumentation frameworks [16, 17], namely that deciding whether an argument is in
every extension of an AF is coNP-complete for the stable semantics, while it is ΠP

2 -
complete for the preferred semantics.

6.2 Commonsense Reasoning
Answer set programming is used for reasoning with commonsense as default inference.
Representing argumentation in logic programs enables us to combine argumentative

3A disjunctive program P is head-cycle-free if the dependency graph of P contains no directed cycle that
goes through two different atoms in the head of the same disjunctive rule in P [4].

26

reasoning and commonsense reasoning. Consider, for instance, an argument between
a driver and a policeman. The driver claims that he did not break the speed limit while
the policeman claims that there is evidence that he did. The driver will receive a fine
only if the outcome of this argument is that the driver did indeed break the speed limit.
Let AF = (Ar, att) be an argumentation framework that represents the discussion
between the driver and the policeman. We denote the main argument in AF (i.e., the
claim that the driver was speeding) by speeding. Then the situation can be represented
by the logic program:

ΠG
AF ∪ { fined← in(speeding), not ¬fined, ¬ fined← not in(speeding) }

where speeding ∈ Ar. The first rule represents that if the argument speeding is ac-
cepted in AF under the grounded semantics, then the driver is normally fined. The
second rule represents that the driver is not fined unless the acceptance of speeding is
proved. Here the grounded semantics is selected under the policy that “one is innocent
unless proven guilty”. Generally, argumentative reasoning and default reasoning are
combined as ΠX

AF ∪ Π where X is either C, S, G or P . ΠX
AF encodes argumen-

tation under a designated semantics. Π encodes a problem for solving that can refer
justification states of arguments of AF in the body of rules in Π.

Further, AF-programs under different semantics can be combined for solving a
problem. For instance, suppose a couple who argue a place to visit for a honeymoon.
They have to choose one country to visit, while they want to visit several cities in the
country as much as possible. If the couple do not reach an agreement on a country
to visit, they will give up the travel and save money instead. Suppose that AF1 =
(Ar1, att1) represents argumentation for country to visit, while AF2 = (Ar2, att2)
represents argumentation for cities to visit (where Ar1 ∩ Ar2 = ∅). In this setting,
the grounded semantics of AF1 is considered for deciding a country to visit, while the
preferred semantics of AF2 is considered for deciding cities to visit. The problem can
be represented as

ΠG
AF1

∪ ΠP
AF2
∪Π ∪ { visit(country)← in(country),

save money ← not in(country),

visit(city)← visit(country), located(city, country), in(city) |
country ∈ Ar1 and city ∈ Ar2}

where Π is the background knowledge specifying located(city, country). The pro-
gram has stable models that represent candidate cities to visit in a single country if an
argument country is accepted in AF1. Prakken [28] introduces a framework that com-
bines skeptical epistemic reasoning based on the grounded semantics and credulous
practical reasoning based on the preferred semantics. The above example shows that
AF-programs could provide yet another method for combining skeptical and credulous
reasoning in AFs that is realized in terms of ASP.

6.3 Related Work
Connections between argumentation frameworks and logic programming have been
investigated by several researchers. Dung [13] first provides a transformation from

27

a logic program to an argumentation framework. He shows that logic programming
semantics are characterized by extension based argumentation semantics in different
ways. He also represents an argumentation framework in a logic program. Given an
argumentation framework AF = (Ar, att), Dung defines the logic program PAF =
AGU ∪APU where

AGU = { attack(x, y)←| (x, y) ∈ att },
APU = { att(x)← attack(y, x), acc(y), acc(x)← not att(x) }

where acc(x) stands for “an argument x is acceptable” and att(x) for “an argument x
is defeated”. For each extension E of AF , put

m(E) = AGU ∪ { acc(x) | x ∈ E} ∪ { att(y) | y is attacked by some x ∈ E }.

He then shows that (i) E is a stable extension of AF iff m(E) is a stable model of
PAF , and (ii) E is the grounded extension of AF iff m(E) ∪ {not att(a) | a ∈ E }
is the well-founded model [35] of PAF . Our representation of AFs in logic programs
is different from Dung’s encoding in three ways. First, Dung captures a logic program
as a meta-interpreter for argumentation systems. That is, an AF is given as input to a
logic program, then the program produces a stable model or the well-founded model
that characterizes a stable extension or the grounded extension of an AF. This is differ-
ent from our encoding in which an individual AF is translated into a logic program that
represents arguments and their attack relations at the object level. Secondly, in Dung’s
encoding different semantics of an AF correspond to different semantics of a logic pro-
gram. By contrast, in our encoding, different semantics of an AF are all characterized
by stable models of a transformed program. Thirdly, Dung encodes extension-based se-
mantics of AFs, while we encode labelling-based semantics of AFs. In labelling-based
semantics, rejected arguments and undecided arguments are distinguished by two la-
bellings out and und, while extension-based semantics does not distinguish them.

Dung’s meta-interpretative approach has been later extended by several researchers.
Egly et al. [19] introduce ASP encodings for different AF semantics. Different from
Dung’s encodings, Egly et al. characterize complete extensions, stable extensions,
grounded extensions, and preferred extensions of AFs in terms of stable models of logic
programs. Gaggl et al. [20] extend the work and provide encodings for semi-stable and
stage extensions of AFs. Wakaki et al. [36] represent different labelling-based seman-
tics of AF (complete, stable, grounded, preferred and semi-stable) by answer sets of
a transformed program. These studies use meta-interpretative encodings, that is, an
instance of AFs is given as an input to a single meta-logic program under a particu-
lar argumentation semantics. As shown in Section 5, the meta-interpretative approach
generally requires rather cumbersome encoding techniques and it becomes complicated
for semantics such as the grounded semantics and the preferred semantics. The com-
plication comes from the fact that a program has to encode tests for checking subset-
minimality (or maximality) of admissible sets. To ease the problem, Dvořák et al. [18]
use a built-in function for computing subset minimization, and Gaggl et al. [20] use
“conditional disjunctions” in ASP.

Carballido et al. [12] provide a logic programming encoding for stable extensions

28

of AF = (Ar, att) such that

ΨAF =
⋃

a∈Ar

{Ψ(a) ∪ {acc(a)← ¬d(a)}}

where

Ψ(a) = {
⋃

b:(b,a)∈att

{d(a)← ¬d(b)}} ∪ {
⋃

b:(b,a)∈att

{d(a)←
∧

c:(c,b)∈att

d(c)}}.

The first rule of Ψ(a) says that an argument a is defeated when any one of its attackers
is not defeated. The second rule says that an argument a is defeated when all the argu-
ments that defend a are defeated. They show that there is a one-to-one correspondence
between stable extensions of AF and stable models of ΨAF . They also characterize
the grounded extension of an AF in terms of the well-founded model of ΨAF . Nieves
et al. [25] also show a one-to-one correspondence between preferred extensions ofAF
and stable models of the program which is obtained from ΨAF by replacing the rules
d(a)← ¬d(b) in Ψ(a) with d(a)∨d(b). Different from our transformation, Ψ(a) con-
siders not only attackers but also defenders (i.e., the argument c defends a in the second
part). The above transformation is simple in the sense that it uses only one predicate
d meaning “an argument x is defeated”, while they do not provide ASP encodings for
complete or grounded extensions of AFs.

Wu et al. [38] introduce a translation from AFs into logic programs. Given AF =
(Ar, att), its associated logic program is defined as

PAF = { a← not b1, . . . ,not bn | a ∈ Ar and a− = {b1, . . . , bn} (n ≥ 0) }.

It is shown that there is a one-to-one correspondence between complete labellings of
AF and 3-valued stable models of PAF [38]. The result is later extended to the cor-
respondences between stable (resp. grounded, preferred, semi-stable) labellings of AF
and stable (resp. well-founded, regular, L-stable) models of PAF [8]. The result of Wu
et al. is similar to ours in the sense that they map arguments and attack relations into
rules of a logic program at the object level. On the other hand, they relate different se-
mantics of AFs to different semantics of logic programs. By contrast, we characterize
different semantics of AFs by a single semantics—(2-valued) stable model semantics
of logic programs. We do not study encoding semi-stable labellings in this paper.

Caminada and Schulz [10] provide a transformation from flat ABA frameworks to
logic programs. Given an ABA framework ABA = (L,R,A, ¯), an associated logic
program PABA is defined as

PABA = {x← y1, . . . , ym,not z1, . . . ,not zn |
x← y1, . . . , ym, ζ1, . . . , ζn ∈ R and ζ̄i = zi for i = 1, . . . , n }.

Then they show that 3-valued stable (resp. well-founded, regular, 2-valued stable, ideal)
models of PABA correspond to complete (resp. grounded, preferred, stable, ideal) as-
sumption labellings of the ABA framework ABA. As such, they relate different se-
mantics of ABA to different semantics of LPs. In this paper, we characterize complete

29

Table 1: Transformations from AFs to LPs
reference representation semantics transformation
Dung [13] meta-interpretative extension stable ext. → stable model (1-to-1)

grounded ext. → well-founded model (1-to-1)
Nieves et al. [25] object level extension preferred ext. → stable model (1-to-1)

Carballido et al. [12] object level extension stable ext. → stable model (1-to-1)
grounded ext. → well-founded model (1-to-1)

Wu et al. [38] object level labelling complete labelling → 3-valued stable model (1-to-1)
Wakaki et al. [36] meta-interpretative labelling complete/stable/grounded/preferred/semi-stable lab.

→ stable model (many-to-one)
Egly et al. [19] meta-interpretative extension complete/stable/grounded/preferred ext.

→ stable model (many-to-one)
Dvořák et al. [18] meta-interpretative extension grounded/preferred/semi-stable/stage ext.

→ stable model (many-to-one)
Gaggl et al. [20] meta-interpretative extension preferred/semi-stable/stage ext.

→ stable model (many-to-one)
Caminada et al. [8] object level labelling stable/grounded/preferred/semi-stable lab.

→ stable/well-founded/regular/L-stable model (1-to-1)
Our current study object level labelling complete/stable/grounded/preferred lab.

→ stable model (many-to-one)

assumption labellings of ABA in terms of stable models of LPs. The result is extended
to encode different semantics of ABA in stable models of LPs using the result of [33].

We summarize comparisons with related studies on the transformation from AFs
to LPs in Table 1. From the representation viewpoint, in the meta-interpretative ap-
proach, individual AFs are given as input to a single metalogic program that produces
selected models characterizing input AF semantics. In the object level approach, in-
dividual AFs are transformed to corresponding logic programs whose selected models
characterize input AF semantics. From the semantic viewpoint, in the extension-based
approach, extensions of an AF are characterized by selected models of a transformed
logic program. In the labelling-based approach, labellings of an AF are characterized
by selected models of a transformed logic program. In the transformational viewpoint,
in one-to-one mapping, different semantics of an AF are characterized by different se-
mantics of a transformed LP. In many-to-one mapping, different semantics of an AF
are characterized by a single semantics of a transformed LP. By the table, it is observed
that our current study realizes many-to-one transformations from AFs to LPs at the
object level under the labelling semantics, which has not been studied in the literature.

7 Conclusion
We introduced methods of representing argumentation frameworks in terms of logic
programs and showed their applications. The proposed transformations encode dif-
ferent AF semantics by stable models of LPs in a simple and uniform manner. This
enables one to use existing answer set solvers for computing argumentation semantics
and solving various problems of AFs. Moreover, several techniques developed in LPs
are directly applied to transformed AF-programs. For instance, the equivalence issue
of AFs is converted to the equivalence issue of the transformed AF programs, opti-

30

mization of AFs is viewed as optimization of AF-programs, revision of AFs is realized
by revision of AF-programs, etc. In this way, the result of this study implies potential
use of rich LP techniques in AF problems, and contributes to strengthen the relation-
ship between formal argumentation and logic programming. In future study, we plan
to implement ASP encodings of AFs and solve AF problems using ASP solvers. We
will also argue possibilities of importing LP techniques into AFs and investigate ASP
encodings for other semantics of AFs (such as semi-stable labellings).

Acknowledgments
We thank anonymous referees for useful comments.

References
[1] Amgoud, L. and Vesic, S.: A formal analysis of the role of argumentation in

negotiation dialogues. Journal of Logic and Computation 22, 2012, 957–978.

[2] Baroni, P., Caminada, M. and Giacomin, M.: An introduction to argumentation
semantics. The Knowledge Engineering Review 26, 2011, 365–410.

[3] Baumann, R. and Brewka, G.: Expanding argumentation frameworks: enforcing
and monotonicity results. In: Proc. 3rd Int’l Conf. Computational Models of Ar-
gument. Frontiers in AI and Applications 216, IOS Press, 2010, 75–86.

[4] Ben-Eliyahu, R. and Dechter, R.: Propositional semantics for disjunctive logic
programs. Annals of Mathematics and Artificial Intelligence 12, 1994, 53–87.

[5] Bondarenko, A., Dung, P. M., Kowalski, R. A. and Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence 93,
1997, 63–101.

[6] Brewka, G., Eiter, T. and Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54, 2011, 92–103.

[7] Caminada, M. and Gabbay, D.: A logical account of formal argumentation. Studia
Logica 93, 2009, 109–145.

[8] Caminada, M., Sá, S., Alcântara, J. and Dvořák, W.: On the equivalence between
logic programming semantics and argumentation semantics. Journal of Approxi-
mate Reasoning 58, 2015, 87–111.

[9] Caminada, M., Sá, S., Alcântara, J. and Dvořák, W.: On the difference be-
tween assumption-based argumentation and abstract argumentation. In: Proc. 25th
Benelux Conf. Artificial Intelligence, 2013, 25–32.

[10] Caminada, M. and Schulz, C.: On the equivalence between assumption-based
argumentation and logic programming. In: Proc. 1st Int’l Workshop on Argumen-
tation and Logic Programming, Cork, Ireland, 2015.

[11] Caminada, M. and Sakama, C.: On the issue of argumentation and informedness.
New Frontiers in Artificial Intelligence (H. Otake et al., Eds.), LNAI, vol. 10091,
Springer, 2016.

31

[12] Carballido, J. L., Nieves, J. C. and Osorio, M.: Inferring preferred extensions by
pstable semantics. Inteligencia Artificial 41, 2009, 38–53.

[13] Dung, P. M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 1995, 321–357.

[14] Dung, P. M., Mancarella, P., and Toni, F.: Computing ideal sceptical argumenta-
tion. Artificial Intelligence 171, 2007, 642–674.

[15] Dung P. M., Kowalski, R. A. and Toni, F.: Assumption-based argumentation.
In: Argumentation in Artificial Intelligence (I. Rahwan and G. R.. Simari, Eds.),
Springer, 2009, 199–218.

[16] Dunne, P. E. and Wooldridge, M.: Complexity of abstract argumentation. In: Ar-
gumentation in Artificial Intelligence (I. Rahwan and G. R.. Simari, Eds.), Springer,
2009, 85–104.

[17] Dvořák, W. and Woltran, S.: On the intertranslatability of argumentation seman-
tics. J. Artificial Intelligence Research 41, 2011, 445–475.

[18] Dvořák, W., Gaggl, S. A., Wallner, J. P. and Woltran, S. Making use of advances
in answer-set programming for abstract argumentation systems. In: Proc. 19th Int’l
Conf. Applications of Declarative Programming and Knowledge Management, Re-
vised Selected Papers, LNAI, vol. 7773, Springer, 2013, 114–133.

[19] Egly, U., Gaggl, S. A. and Woltran, S.: Answer-set programming encodings for
argumentation frameworks. Argument and Computation 1, 2010, 147–177.

[20] Gaggl, S. A., Manthey, N., Ronca, A., Wallner, J. P. and Woltran, S.: Improved
answer-set programming encodings for abstract argumentation. Theory and Prac-
tice of Logic Programming 15, 2015, 434–448.

[21] Gelfond, M. and Lifschitz, V.: The stable model semantics for logic program-
ming. In: Proc. 5th Int’l Conf. and Symp. Logic Programming, MIT Press, 1988,
1070–1080.

[22] Gelfond, M. and Lifschitz, V.: Classical negation in logic programs and disjunc-
tive databases. New Generation Computing 9, 1991, 365–385.

[23] Marquis, S. C, Konieczny, S., Mailly, J.-G. and Marquis, P.: Extension enforce-
ment in abstract argumentation as an optimization problem. In: Proc. 24th Int’l
Joint Conf. Artificial Intelligence, 2015, 2876–2882.

[24] Modgil, S. and Caminada, M.: Proof theories and algorithms for abstract argu-
mentation framework. In: Argumentation in Artificial Intelligence (I. Rahwan and
G. R.. Simari, Eds.), Springer, 2009, 105–129.

[25] Nieves, J. C., Osorio, M. and Cortés, U.: Preferred extensions as stable models.
Theory and Practice of Logic Programming 8, 2008, 527–543.

[26] Oikarinen, E. and Janhunen, T.: Verifying the equivalence of logic programs in
the disjunctive case. In: Proc. 7th Int’l Conf. Logic Programming and Nonmono-
tonic Reasoning, LNAI, vol. 2923, Springer, 2004, 180–193.

32

[27] Oikarinen, E. and Woltran, S.: Characterizing strong equivalence for argumenta-
tion frameworks. Artificial Intelligence 175, 2011, 1985–2009.

[28] Prakken, H.: Combining sceptical epistemic reasoning with credulous practical
reasoning (corrected version). Revised version of the paper originally published
in: Proc. 1st Int’l Conf. Computational Models of Argument. Frontiers in AI and
Applications 144, IOS Press, 2006, 311–322.

[29] Przymusinski, T. C.: The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae 13, 1990, 445–463.

[30] Sakama, C.: Dishonest arguments in debate games. In: Proc. 4th Int’l Conf.
Computational Models of Argument. Frontiers in AI and Applications 245, IOS
Press, 2012, 177–184.

[31] Schlipf, J.: Complexity and undecidability results for logic programming. Annals
of Mathematics and Artificial Intelligence 15, 1995, 257–288.

[32] Schulz, C. and Toni, F.: Complete assumption labellings. In: Proc. 5th Int’l
Conf. Computational Models of Argument. Frontiers in AI and Applications 266,
IOS Press, 2014, 405–412.

[33] Schulz, C.: Assumption labellings. Technical Report, Imperial College, London,
UK, 2015.

[34] Toni, F. and Sergot, M.: Argumentation and answer set programming. In: Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays
in Honor of Michael Gelfond (M. Balduccini and T. C. Son, Eds.), LNCS, vol.
6565, Springer, 2011, 164–180.

[35] Van Gelder, A., Ross, K. and Schlipf, J. S.: The well-founded semantics for
general logic programs. J. ACM 38, 1991, 620–650.

[36] Wakaki, T. and Nitta, K.: Computing argumentation semantics in answer set
programming. New Frontiers in Artificial Intelligence (H. Hattori et al., Eds.),
LNAI, vol. 5447, Springer, 2009, 254–269.

[37] Wallner, J. P., Niskanen, A. and Jarvisalo, M.: Complexity results and algorithms
for extension enforcement in abstract argumentation. In: Proc. 30th AAAI Conf.
Artificial Intelligence, 2016, 1088–1094.

[38] Wu, Y., Caminada, M. and Gabbay, D. M.: Complete extensions in argumentation
coincide with 3-valued stable models in logic programming. Studia Logica 93,
2009, 383–403.

[39] You, J.-H. and Yuan, L.-Y.: A three-valued semantics for deductive databases and
logic programs. J. Computer and System Science 49, 1994, 334–361.

33

