Stellar, solar, and lunar demonstrators

Rosa M. Ros, Francis Berthomieu

International Astronomical Union Comm C1
Technical University of Catalonia, Spain
CLEA, France
Goals

- Understand the apparent motions of stars as seen from different latitudes.
- Understand the apparent motions of the Sun as seen from different latitudes.
- Understand the Moon’s movement and shapes as seen from different latitudes.
Stellar demonstrator for showing:

- Paths of the stars in the sky
- Circumpolar stars, stars that rise and set, stars that don’t rise or set
- Travel anywhere if you know the latitude
- (You can build a simulator for each location)
circumpolar / stars that rise & set / stars that don’t rise or set
Stellar demonstrator
Stellar demonstrator for Northern Hemisphere
Stellar demonstrator for Southern Hemisphere
blank stellar demonstrator
(add desired constellations)

• Spring
• Summer
• Autumn
• Winter
• Or each month
Construction

- All explanations are given for construction depending on:
 - Northern hemisphere
 - Southern hemisphere
Building instructions step 1

- Make a photocopy on heavy-weight paper
- Cut both pieces (big one and small one) along the continuous line
- Remove the black areas
- Fold the main piece along the straight dotted line.
Building instructions step 2

- Cut a small notch above the “N” (northern hemisphere) in the horizon disk or the “S” (southern hemisphere) in the horizon disk.

- Glue the North-East quadrant (northern hemisphere) of the horizon disk onto the grey quadrant of the main piece. The “W” point must match up with latitude 90°, or the South-West quadrant (southern hemisphere) of the horizon disk onto the grey quadrant of the main piece. The “E” point must match up with latitude 90°.

Try to be careful in this operation because the accuracy of model depends on the correct alignment of the two parts.
Building instructions step 3

- Fit the incision “N” (northern hemisphere) in the quadrant over the degrees of latitude

or the incision “S” (southern hemisphere) in the quadrant over the degrees of latitude

- Hold the horizon disk perpendicular to the latitude degrees

- Begin to use by setting it for any desired latitude…
Tilts of stellar paths

- Lat 70° Enontekiö Finland
- Lat 41° Montseny Spain
- Lat 23° Matehuala Mexico
Where is sunrise?
Is this picture correct?
The sunrise is always due East and the sunset is always due West. Is this correct?
...with another demonstrator
Solar demonstrator for showing:

- Daytime solar path
- Annual motion of the sun
- Study risings and settings
- Midnight Sun
- Travel anywhere if you know the latitude
Solar demonstrator
Northern hemisphere
Solar demonstrator
Southern hemisphere
Solar motions
Sun’s path

- Place “N” at proper latitude
- Place marker at proper date
- Move date “arm” to show sun’s path throughout a day
- Note positions of rise/set
Slope of the Sun’s path

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°</td>
<td>Enontekiö, Finland</td>
</tr>
<tr>
<td>40°</td>
<td>Gandía, Spain</td>
</tr>
<tr>
<td>5°</td>
<td>Ladrillero, Colombia</td>
</tr>
</tbody>
</table>
Height of the solar path

Summer and Winter in Norway
Sunrises/sunsets in different places

- Riga, Latvia
- Barcelona, España
- Popayán, Colombia

winter spring autumn summer
Polar summer and winter

At the poles, the sun is above the horizon for half a year and below it for half a year.
Midnight Sun

The Sun goes down until it passes the meridian and then begins to rise rather than set below the horizon.
“Seasons at the equator”

The solar path is always almost perpendicular to the horizon and its length is almost the same throughout the year.
Sun at the zenith

At solar noon, the shadow is on your feet.
Lunar demonstrator

■ Why the Moon smiles in some places?
Why yes or no....
Lunar demonstrator
XXL demonstrators
Thank you very much for your attention!